Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T02:33:45.438Z Has data issue: false hasContentIssue false

Complex B-splines and Hurwitz zeta functions

Published online by Cambridge University Press:  10 April 2013

B. Forster
Affiliation:
Fakultät für Informatik und Mathematik,Universität Passau,Innstr. 33, 94032 Passau,Germany email [email protected] Institut für Biomathematik und Biometrie,Helmholtz Zentrum München,Ingolstädter Landstraße 1,85764 Neuherberg,Germany email [email protected]@ma.tum.de
R. Garunkštis
Affiliation:
Faculty of Mathematics and Informatics,Vilnius University,Naugarduko 24, 03225 Vilnius,Lithuania email [email protected]
P. Massopust
Affiliation:
Institut für Biomathematik und Biometrie,Helmholtz Zentrum München,Ingolstädter Landstraße 1,85764 Neuherberg,Germany email [email protected]@ma.tum.de Zentrum Mathematik, M6,Technische Universität München,Boltzmannstr. 3, 85747 Garching,Germany email [email protected]
J. Steuding
Affiliation:
Department of Mathematics,Würzburg University,Am Hubland, 97074 Würzburg,Germany email [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterize nonempty open subsets of the complex plane where the sum $\zeta (s, \alpha )+ {e}^{\pm i\pi s} \hspace{0.167em} \zeta (s, 1- \alpha )$ of Hurwitz zeta functions has no zeros in $s$ for all $0\leq \alpha \leq 1$. This problem is motivated by the construction of fundamental cardinal splines of complex order $s$.

Type
Research Article
Copyright
© The Author(s) 2013 

References

Chui, C. K., An Introduction to Wavelets (Academic Press, San Diego, 1992).Google Scholar
Laurinčikas, A. and Garunkštis, R., The Lerch Zeta-Function (Kluwer, 2002).Google Scholar
Forster, B., Blu, T. and Unser, M., ‘Complex B-splines’, Appl. Comput. Harmon. Anal. 20 (2006) 281282.CrossRefGoogle Scholar
Forster, B. and Massopust, P., ‘Statistical encounters with complex B-Splines’, Constr. Approx. 29 (2009) no. 3, 325344.CrossRefGoogle Scholar
Massopust, P. and Forster, B., ‘Multivariate complex B-splines and Dirichlet averages’, J. Approx. Theory 162 (2010) 252269.CrossRefGoogle Scholar
Schoenberg, I. J., Cardinal spline interpolation, CBMS-NSF Regional Conference Series in Applied Mathematics 12 (SIAM, Philadelphia, 1973).CrossRefGoogle Scholar
Spira, R., ‘Zeros of Hurwitz zeta functions’, Math. Comput. 30 (1976) no. 136, 863866.CrossRefGoogle Scholar