We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
and study some basic properties of these operators where ${p}_{n, k} (u)=\bigl(\hspace{-4pt}{\scriptsize \begin{array}{ l} \displaystyle n\\ \displaystyle k\end{array} } \hspace{-4pt}\bigr){u}^{k} \mathop{(1- u)}\nolimits ^{n- k} , (0\leq k\leq n), u\in [0, 1] $ and ${s}_{n, k} (u)= {e}^{- nu} \mathop{(nu)}\nolimits ^{k} \hspace{-3pt}/ k!, u\in [0, \infty )$. Also, we establish the order of approximation by using weighted modulus of continuity.
Achieser, N. I., Lectures on the theory of approximation (OGIZ, Moscow–Leningrad, 1947) (Russian); Theory of approximation, translated by C. J. Hymann (Frederick Ungar, New York, 1956) 208–226.Google Scholar
2
Becker, M., ‘Global approximation theorems for Szász–Mirakjan and Baskakov operators in polynomial weight spaces’, Indiana Univ. Math. J. (1978) 127–142.CrossRefGoogle Scholar
3
Chlodowsky, I., ‘Sur le développment des fonctions défines dans un interval infinien séries de polynómes de S. N. Bernstein’, Compositio Math.4 (1937) 380–392.Google Scholar
4
Coşkun, T., ‘Some properties of linear positive operators on the spaces of weight functions’, Commun. Fac. Sci. Univ. Ank. Sér. A147 (1998) 175–181.Google Scholar
5
Coşkun, T., ‘Weighted approximation of continuous functions by sequences of linear positive operators’, Proc. Indian Acad. Sci. (Math. Sci.)110 (2000) 357–362.CrossRefGoogle Scholar
6
Ditzian, Z., ‘Convergence of sequences of linear positive operators: remarks and applications’, J. Approx. Theory14 (1975) 296–301.CrossRefGoogle Scholar
7
Ditzian, Z., ‘On global invers theorems of Szăsz and Baskakov operators’, Canad. J. Math.31 (1972) 255–263.CrossRefGoogle Scholar
8
Doğru, O., ‘Weighted approximation of continuous functions on the all positive axis by modified linear positive operators’, Int. J. Comput. Numer. Anal. Appl.1 (2002) 135–147.Google Scholar
9
Durrmeyer, J. L., ‘Une formule d’inversion de la transformee de Laplace: Applications a la theorie de moments’, these de 3e cycle, Faculte des sciences de 1’universite de Paris (1967).Google Scholar
10
Gadzhiev, A. D., ‘The convergence problem for a sequence of linear operators on unbounded sets and theorem analogous to that of P. P. Korovkin’, Soviet Math. Dokl.15 (1974) 1433–1436.Google Scholar
11
Gadzhiev, A. D., ‘Theorems of the type P. P. Korovkin theorems’, Math. Zametki20 (1976) 781–786; English translation in Math. Notes 20 (1976), 996–998.Google Scholar
12
Gadzhiev, A. D., Efendiev, R. O. and Ibikli, E., ‘Generalized Bernstein–Chlodowsky polynomials’, Rocky Mount. J. Math.28 (1998) 1267–1277.Google Scholar
13
Gadzhieva, E. A. and Ibikli, E., ‘Weighted approximation by Bernstein–Chlodowsky polynomials’, Indian J. Pure Appl. Math.30 (1999) 83–87.Google Scholar
Gupta, V. and Agarval, P. N., ‘An estimation of the rate of convergence for modified Szăsz–Mirakjan operators of functions of bounded variation’, Publ. Inst. Math. (Beograd) (N.S.)49 (1991) 97–103.Google Scholar
16
Ibikli, E., ‘On approximation by Bernstein–Chlodowsky polynomials’, Math. Balkanica (N.S.)17 (2003) 259–265.Google Scholar
17
Ibikli, E. and Karslı, H., ‘Rate of convergence of Chlodowsky type Durrmeyer operators’, J. Inequal. Pure Appl. Math.6 (2005) no. 4, paper 106.Google Scholar
18
Ibikli, E., Izgi, A. and Buyukyazıcı, I., Approximation of ${L}^{p} $- integrable functions by linear positive operators. ICCAM 2006, 10–14 July.Google Scholar
19
Ispir, N., ‘On modified Baskakov operators on weighted spaces’, Turkish J. Math.26 (2001) 355–365.Google Scholar
20
Ispir, N. and Atakut, Ç., ‘Approximation by modified Szasz–Mirakjan operators on weighted spaces’, Proc. Indian Acad. Sci. (Math. Sci.)112 (2002) 571–578.CrossRefGoogle Scholar
21
Lešniewicz, M. and Rempluska, L. R., ‘Approximation by some operators of Szasz–Mirakjan type in exponential weight spaces’, Glas. Mat.32 (1997) 57–69.Google Scholar
22
May, C. P., ‘Saturation and inverse theorems for combinations of class of exponential type operators’, Canad. J. Math.28 (1976) 1224–1250.CrossRefGoogle Scholar
23
Mazhar, S. M. and Totik, V., ‘Approximation by modified Szász operators’, Acta Sci. Math.49 (1985) 257–269.Google Scholar
24
Walczak, Z., ‘On certain linear positive operators in exponential weighted spaces’, Math. J. Tojama Univ.25 (2002) 19–118.Google Scholar
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Neer, Trapti
Acu, Ana Maria
and
Agrawal, P. N.
2019.
Degree of approximation by Chlodowsky variant of Jakimovski–Leviatan–Durrmeyer type operators.
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas,
Vol. 113,
Issue. 4,
p.
3445.
Çiçek, Harun
İzgi, Aydın
and
Ghatee, Mehdi
2020.
Theq-Chlodowsky andq-Szasz-Durrmeyer Hybrid Operators on Weighted Spaces.
Journal of Mathematics,
Vol. 2020,
Issue. ,
p.
1.
Sadiq, Haneen J.
2020.
Some Approximation Properties of New Family of Baskakov-Type Operators.
IOP Conference Series: Materials Science and Engineering,
Vol. 928,
Issue. 4,
p.
042010.
Aslan, Reşat
and
Mursaleen, M.
2022.
Approximation by bivariate Chlodowsky type Szász–Durrmeyer operators and associated GBS operators on weighted spaces.
Journal of Inequalities and Applications,
Vol. 2022,
Issue. 1,