Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T11:48:25.611Z Has data issue: false hasContentIssue false

Water relations in the soil crust lichen Psora decipiens are optimized via anatomical variability

Published online by Cambridge University Press:  19 September 2017

C. COLESIE
Affiliation:
Plant Ecology and Systematics, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 13, Gebäude 13, 67663 Kaiserslautern, Germany. Email: [email protected]
L. WILLIAMS
Affiliation:
Plant Ecology and Systematics, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 13, Gebäude 13, 67663 Kaiserslautern, Germany. Email: [email protected]
B. BÜDEL
Affiliation:
Plant Ecology and Systematics, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 13, Gebäude 13, 67663 Kaiserslautern, Germany. Email: [email protected]

Abstract

Biological soil crusts are communities composed of cryptogamic organisms such as lichens, mosses, cyanobacteria and green algae that form a skin on soils in areas where vascular plants are excluded or limited by water availability or temperature. The lichen Psora decipiens (Hedw.) Hoffm. is a characteristic key organism in these communities in many different biomes. The species has a generalistic ecology and high morphological variation, which contributes to the ability of the species to withstand environmental changes. We investigated whether different populations, based on site and associated morpho-anatomical differences, incorporate functional water relations and how/whether this was driven by changes in abiotic factors. Samples were collected from two climatically distinct sites, one ‘dry’ site in southern Spain and one ‘wet’ site in the Austrian Alps. Our results showed that samples from the dry site had a significantly thicker epinecral layer, higher specific thallus area, a faster water uptake and contained more water per dry mass, all of which contributed to a much slower drying rate. Both populations showed a highly adjusted water gain that incorporates functional water relations and diffusion properties as a result of local water availability. We show eco-physiological and morphological mechanisms that underlie the high variability in P. decipiens and suggest how these might provide ecological benefits for this generalist lichen species.

Type
Articles
Copyright
© British Lichen Society, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auer, I. R., Böhm, M., Leymüller, S. & Schöner, W. (2002) Das Klima des Sonnblicks. Klimaatlas und Klimatographie der GAW Station Sonnblick einschließlich der umgebenden Gebirgsregion. Österreichische Beiträge zur Meteorologie und Geophysik 28: 1408.Google Scholar
Beckett, R. P. (1995) Some aspects of the water relations of lichens from habitats of contrasting water status studied using thermocouple psychrometry. Annals of Botany 76: 211217.CrossRefGoogle Scholar
Begon, M., Townsend, C. R. & Harper, J. L. (2006) Ecology: From Individuals to Ecosystems. 4th edition. Oxford: Blackwell Publishing Ltd.Google Scholar
Belnap, J., Büdel, B. & Lange, O. L. (2003) Biological soil crusts: characteristics and distribution. In Biological Soil Crusts: Structure, Function, and Management (2nd edn) (J. Belnap & O. L. Lange, eds): 330. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Büdel, B. (2003) Biological soil crusts in European temperate and Mediterranean regions. In Biological Soil Crusts: Structure, Function, and Management (2nd edn) (J. Belnap & O. L. Lange, eds): 7587. Berlin, Heidelberg: Springer.Google Scholar
Büdel, B. & Lange, O. L. (1994) The role of cortical and epinecral layers in the lichen genus Peltula. Cryptogamic Botany 4: 262269.Google Scholar
Büdel, B., Karsten, U. & Garcia-Pichel, F. (1997) Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed, rock-inhabiting cyanobacterial lichens. Oecologia 112: 165172.Google ScholarPubMed
Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K., Salisch, M., Reisser, W. & Weber, B. (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbial Ecology 57: 229247.CrossRefGoogle Scholar
Büdel, B., Colesie, C., Green, T. G. A., Grube, M., Suau, R. L., Loewen-Schneider, K., Maier, S., Peer, T., Pintado, A., Raggio, J., et al. (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodiversity and Conservation 23: 16391658.CrossRefGoogle ScholarPubMed
Cantón, Y., Solé-Benet, A. & Domingo, F. (2004) Temporal and spatial patterns of soil moisture in semi-arid badlands of SE Spain. Journal of Hydrology 285: 199214.CrossRefGoogle Scholar
Cowan, I. R., Lange, O. L. & Green, T. G. A. (1992) Carbon-dioxide exchange in lichens: determination of transport and carboxylation characteristics. Planta 187: 282294.CrossRefGoogle ScholarPubMed
Crespo, A., Kauff, F., Divakar, P. K., del Prado, R., Pérez-Ortega, S., Amo de Paz, G., Ferencova, Z., Blanco, O., Roca-Valiente, B., Núñez-Zapata, J. et al. (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59: 17351753.CrossRefGoogle Scholar
Dietz, S., Büdel, B., Lange, O. L. & Bilger, W. (2000) Transmittance of light through the cortex of lichens from contrasting habitats. Bibliotheca Lichenologica 75: 171182.Google Scholar
Doerr, S. H. (1998) On standardizing the ‘water drop penetration time’ and the ‘molarity of an ethanol droplet’ techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surface Processes and Landforms 23: 663668.3.0.CO;2-6>CrossRefGoogle Scholar
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andrae, B. & Pöschl, U. (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geosciences 5: 459462.CrossRefGoogle Scholar
Galun, M. & Garty, J. (2003) Biological soil crusts of the Middle East. In Biological Soil Crusts: Structure, Function, and Management (2nd edn) (J. Belnap & O. L. Lange, eds): 95107. Berlin, Heidelberg: Springer.Google Scholar
Gauslaa, Y. (2014) Rain, dew, and humid air as drivers of lichen morphology, function and spatial distribution in epiphytic lichens. Lichenologist 46: 116.CrossRefGoogle Scholar
Gauslaa, Y., Coxson, D. S. & Solhaug, K. A. (2012) The paradox of higher light tolerance during desiccation in rare old forest cyanolichens than in more widespread co-occurring chloro- and cephalolichens. New Phytologist 195: 812822.CrossRefGoogle ScholarPubMed
Honegger, R. (1991) Functional aspects of the lichen symbiosis. Annual Review of Plant Physiology and Plant Molecular Biology 42: 553578.CrossRefGoogle Scholar
Hufford, K. M. & Mazer, S. J. (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends in Ecology and Evolution 18: 147155.CrossRefGoogle Scholar
IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Kappen, L., Schroeter, B., Green, T. G. A. & Seppelt, R. D. (1998) Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold. Oecologia 113: 325331.CrossRefGoogle ScholarPubMed
Kershaw, K. A. (1985) Physiological Ecology of Lichens. Cambridge: Cambridge University Press.Google Scholar
Körner, C. (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115: 445459.Google ScholarPubMed
Lakatos, M., Rascher, U. & Büdel, B. (2006) Functional characteristics of corticolous lichens in the understory of a tropical lowland rain forest. New Phytologist 172: 679695.CrossRefGoogle ScholarPubMed
Lange, O. L., Büdel, B., Heber, U., Meyer, A., Zellner, H. & Green, T. G. A. (1993) Temperate rainforest lichens in New Zealand: high thallus water content can severely limit photosynthetic CO2 exchange. Oecologia 95: 303313.CrossRefGoogle Scholar
Lange, O. L., Green, T. G. A., Reichenberger, H., Hesbacher, S. & Proksch, P. (1997) Do secondary substances in the thallus of a lichen promote CO2 diffusion and prevent depression of net photosynthesis at high water content? Oecologia 112: 13.CrossRefGoogle ScholarPubMed
Lázaro, R., Rodrigo, F. S., Gutiérrez, L., Do, F. & Puigdefábregas, J. (2001) Analysis of a 30-year rainfall record (1967–1997) in semi-arid SE Spain for implications on vegetation. Journal of Arid Environments 48: 373375.CrossRefGoogle Scholar
Leelamanie, D. A. L., Karube, J. & Yoshida, A. (2008) Characterizing water repellency indices: contact angle and water drop penetration time of hydrophobized sand. Soil Science and Plant Nutrition 54: 179187.CrossRefGoogle Scholar
Letey, J., Carrillo, M. I. K. & Pang, X. P. (2000) Approaches to characterize the degree of water repellency. Journal of Hydrology 231: 6165.CrossRefGoogle Scholar
Marron, N., Dreyer, E., Boudouresque, E., Delay, D., Petit, J.-M., Delmotte, F. M. & Brignolas, F. (2003) Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus×canadensis (Moench) clones, ‘Dorskamp’ and ‘Luisa Avanzo’. Tree Physiology 23: 12251235.CrossRefGoogle Scholar
Nadyeina, O., Dymytrova, L., Naumovych, A., Postoyalkin, S., Werth, S., Cheenacharoen, S. & Scheidegger, C. (2014) Microclimatic differentiation of gene pools in the Lobaria pulmonaria symbiosis in a primeval forest landscape. Molecular Ecology 23: 51645178.CrossRefGoogle Scholar
Pardow, A. & Lakatos, M. (2013) Desiccation tolerance and global change: implications for tropical bryophytes in lowland forests. Biotropica 45: 2736.CrossRefGoogle Scholar
Pérez, F. L. (1997) Geoecology of erratic lichens of Xanthoparmelia vagans in an equatorial Andean paramo. Plant Ecology 129: 1128.CrossRefGoogle Scholar
Pérez-Ortega, S., Fernández-Mendoza, F., Raggio, J., Vivas, M., Ascaso, C., Sancho, L. G., Printzen, C. & de los Rios, A. (2012) Extreme phenotypic variation in Cetraria aculeata (lichenized Ascomycota): adaptation or incidental modification? Annals of Botany 109: 11331148.CrossRefGoogle ScholarPubMed
Pintado, A., Valladares, F. & Sancho, L. G. (1997) Exploring phenotypic plasticity in the lichen Ramalina capitata: morphology, water relations and chlorophyll content in north- and south-facing populations. Annals of Botany 80: 345353.CrossRefGoogle Scholar
Pointing, S. B. & Belnap, J. (2012) Microbial colonization and controls in dryland systems. Nature Reviews Microbiology 10: 551562.CrossRefGoogle ScholarPubMed
Rikkinen, J. (1995) What’s behind the pretty colours? A study on the photobiology of lichens. Bryobothera 4: 1239.Google Scholar
Rosentreter, R. & Belnap, J. (2003) Biological soil crusts of North America. In Biological Soil Crusts: Structure, Function, and Management (2nd edn) (J. Belnap & O. L. Lange, eds): 7587. Berlin, Heidelberg: Springer.Google Scholar
Snelgar, W. P. & Green, T. G. A. (1981) Ecologically-linked variation in morphology, acetylene reduction, and water relations in Pseudocyphellaria dissimilis . New Phytologist 87: 403411.CrossRefGoogle Scholar
Sojo, F., Valladares, F. & Sancho, L. G. (1997) Structural and physiological plasticity of the lichen Catillaria corymbosa in different microhabitats of the Maritime Antarctic. Bryologist 100: 171179.CrossRefGoogle Scholar
Sultan, S. E. (2000) Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 12: 537542.CrossRefGoogle Scholar
Sultan, S. E., Wilczek, A. M., Bell, D. L. & Hand, G. (1998) Physiological response to complex environments in annual Polygonum species of contrasting ecological breadth. Oecologia 115: 564572.CrossRefGoogle ScholarPubMed
Tretiach, M. & Brown, D. H. (1995) Morphological and physiological differences between epilithic and epiphytic populations of the lichen Parmelia pastillifera . Annals of Botany 75: 627632.CrossRefGoogle Scholar
Wessels, J. G. H. (2000) Hydrophobins, unique fungal proteins. Mycologist 14: 153159.CrossRefGoogle Scholar