Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T21:11:58.993Z Has data issue: false hasContentIssue false

Untangling the hidden intrathalline microalgal diversity in Parmotrema pseudotinctorum: Trebouxia crespoana sp. nov.

Published online by Cambridge University Press:  08 May 2018

Pavel ŠKALOUD
Affiliation:
Department of Botany, Faculty of Sciences, Charles University, Benátská 2, 12800-Prague, Czech Republic. Email: [email protected]
Patricia MOYA
Affiliation:
ICBIBE, Dpto. Botánica, Facultat de Ciències Biològiques, Universitat de València, C/ Dr. Moliner 50, 46100-Burjassot, València, Spain
Arántzazu MOLINS
Affiliation:
ICBIBE, Dpto. Botánica, Facultat de Ciències Biològiques, Universitat de València, C/ Dr. Moliner 50, 46100-Burjassot, València, Spain
Ondřej PEKSA
Affiliation:
The West Bohemian Museum in Pilsen, Kopeckého sady 2, 30100-Plzeň, Czech Republic
Arnoldo SANTOS-GUERRA
Affiliation:
Calle Guaidil 16, 38280 Tegueste, Tenerife, Spain
Eva BARRENO
Affiliation:
ICBIBE, Dpto. Botánica, Facultat de Ciències Biològiques, Universitat de València, C/ Dr. Moliner 50, 46100-Burjassot, València, Spain

Abstract

Intrathalline phycobiont diversity was investigated in a rosette-forming lichen, Parmotrema pseudotinctorum, using a combination of Sanger sequencing, 454-pyrosequencing, conventional light and confocal microscopy, and transmission electron microscopy. A total of 39 thalli sampled in five Canary Island populations were investigated. Three novel lineages of lichen phycobionts were detected, all being inferred within the Trebouxia clade G. The most abundant phycobiont lineage, occurring in all lichen populations investigated, is described here as Trebouxia crespoana sp. nov. This species produces spherical to pyriform cells possessing a crenulate chloroplast with lobes elongated at their ends, and one corticola-type pyrenoid with very thin, unbranched tubules of curved profile. Trebouxia crespoana is clearly distinguished from all other Trebouxia species by a characteristic cap-like cell wall thickening produced on one side of vegetative cells, and the larger size of vegetative cells that reach 21(–26) µm in diameter.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. (2004) Image processing with ImageJ. Biophotonics International 11: 3642.Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215: 403410.CrossRefGoogle ScholarPubMed
Arnold, A. E., Miadlikowska, J., Higgins, K. L., Sarvate, S. D., Gugger, P., Way, A., Hofstetter, V., Kauff, F. & Lutzoni, F. (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Systematic Biology 58: 283297.Google Scholar
Beck, A. (2002) Selektivität der Symbionten schwermetalltoleranter Flechten. Ph.D. thesis, Universität München.Google Scholar
Beck, A., Kasalicky, T. & Rambold, G. (2002) Myco‐photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida . New Phytologist 153: 317326.CrossRefGoogle Scholar
Bischoff, H. W. & Bold, H. C. (1963) Phycological Studies IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publications 6318: 195.Google Scholar
Blaha, J., Baloch, E. & Grube, M. (2006) High phycobiont diversity in symbioses of the euryoecious lichen Lecanora rupicola (Lecanoraceae, Ascomycota). Biological Journal of the Linnean Society 88: 283293.CrossRefGoogle Scholar
Bold, H. C. (1949) The morphology of Chlamydomonas chlamydogama sp. nov. Bulletin of the Torrey Botanical Club 76: 101108.CrossRefGoogle Scholar
Casano, L. M., del Campo, E. M., García-Breijo, F. J., Reig-Armiñana, J., Gasulla, F., del Hoyo, A., Guéra, A. & Barreno, E. (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environmental Microbiology 13: 806818.CrossRefGoogle ScholarPubMed
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540552.Google Scholar
Catalá, S., del Campo, E. M., Barreno, E., García-Breijo, F. J., Reig-Armiñana, J. & Casano, L. M. (2016) Coordinated ultrastructural and phylogenomic analyses shed light on the hidden phycobiont diversity of Trebouxia microalgae in Ramalina fraxinea . Molecular Phylogenetics and Evolution 94: 765777.Google Scholar
Dahlkild, Å., Källersjö, M., Lohtander, K. & Tehler, A. (2001) Photobiont diversity in the Physciaceae (Lecanorales). Bryologist 104: 527536.CrossRefGoogle Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.CrossRefGoogle ScholarPubMed
del Campo, E. M., Casano, L. M., Gasulla, F. & Barreno, E. (2010) Suitability of chloroplast LSU rDNA and its diverse group I introns for species recognition and phylogenetic analyses of lichen-forming Trebouxia algae. Molecular Phylogenetics and Evolution 54: 437444.CrossRefGoogle Scholar
Doering, M. & Piercey-Normore, M. D. (2009) Genetically divergent algae shape an epiphytic lichen community on Jack Pine in Manitoba. Lichenologist 41: 6980.Google Scholar
Ettl, H. & Gärtner, G. (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer Verlag.Google Scholar
Friedl, T. (1989) Comparative ultrastructure of pyrenoids in Trebouxia (Microthamniales, Chlorophyta). Plant Systematics and Evolution 164: 145159.CrossRefGoogle Scholar
Friedl, T. & Gärtner, G. (1989) Trebouxia (Pleurastrales, Chlorophyta) as a phycobiont in the lichen genus Diploschistes. Archiv für Protistenkunde 135: 147158.CrossRefGoogle Scholar
Gasulla, F., Guéra, A. & Barreno, E. (2010) A simple micromethod for isolating lichen phycobionts. Symbiosis 51: 175179.CrossRefGoogle Scholar
Gimeno Molina, B., Barreno, E. & Biosca, E. G. (2016) Caracterización biotecnológica de bacterias asociadas al liquen Parmotrema pseudotinctorum. M.Sc. thesis, Universitat de València.Google Scholar
Helms, G. (2003) Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Ph.D. thesis, Georg-August Universität Göttingen.Google Scholar
Honegger, R. (1986) Ultrastructural studies in lichens I. Haustorial types and their frequencies in a range of lichens with trebouxioid photobionts. New Phytologist 103: 785795.Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 30593066.Google Scholar
Kroken, S. & Taylor, J. W. (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia . Bryologist 103: 645660.Google Scholar
Leavitt, S. D., Kraichak, E., Nelsen, M. P., Altermann, S., Divakar, P., Alors, D., Esslinger, T. L., Crespo, A. & Lumbsch, T. (2015) Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Molecular Ecology 24: 37793797.CrossRefGoogle Scholar
Leavitt, S. D., Kraichak, E., Vondrak, J., Nelsen, M. P., Sohrabi, M., Pérez-Ortega, S. St Clair, L. L. & Lumbsch, H. T. (2016) Cryptic diversity and symbiont interactions in rock-posy lichens. Molecular Phylogenetics and Evolution 99: 261274.Google Scholar
Malavasi, V., Škaloud, P., Rindi, F., Tempesta, S., Paoletti, M. & Pasqualetti, M. (2016) DNA-based taxonomy in ecologically versatile microalgae: a re-evaluation of the species concept within the coccoid green algal genus Coccomyxa (Trebouxiophyceae, Chlorophyta). PLoS ONE 11: e0151137.CrossRefGoogle ScholarPubMed
Mansournia, M. R., Wu, B., Matsushita, N. & Hogetsu, T. (2012) Genotypic analysis of the foliose lichen Parmotrema tinctorum using microsatellite markers: association of mycobiont and photobiont, and their reproductive modes. Lichenologist 44: 419440.Google Scholar
Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., Gaya, E., Hafellner, J., Hofstetter, V., Gueidan, C. et al. (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132168.Google Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp. 1–8.Google Scholar
Molins, A., García-Breijo, F. J., Reig-Armiñana, J., del Campo, E. M., Casano, L. M. & Barreno, E. (2013) Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen Parmotrema pseudotinctorum . Vieraea 41: 349370.Google Scholar
Molins, A., Moya, P., García-Breijo, F. J., Reig-Armiñana, J. & Barreno, E. (2018) A multi-tool approach to assess microalgal diversity in lichens: isolation, Sanger sequencing, HTS and ultrastructural correlations. Lichenologist 50: 123138.CrossRefGoogle Scholar
Moniz, M. B. J, Rindi, F., Novis, P. M., Broady, P. A. & Guiry, M. D. (2012) Molecular phylogeny of Antarctic Prasiola (Prasiolales, Trebouxiophyceae) reveals extensive cryptic diversity. Journal of Phycology 48: 940955.CrossRefGoogle ScholarPubMed
Moya, P., Škaloud, P., Chiva, S., García-Breijo, J. F., Reig-Armiñana, J., Vančurová, L. & Barreno, E. (2015) Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Islands ecosystems. International Journal of Systematics and Evolutionary Microbiology 65: 18381854.Google Scholar
Moya, P., Molins, A., Martínez-Alberola, F., Muggia, L. & Barreno, E. (2017) Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS ONE 12: e0175091.Google Scholar
Muggia, L., Zellnig, G., Rabensteiner, J. & Grube, M. (2010) Morphological and phylogenetic study of algal partners associated with the lichen-forming fungus Tephromela atra from the Mediterranean region. Symbiosis 51: 149160.Google Scholar
Muggia, L., Pérez-Ortega, S., Kopun, T., Zellnig, G. & Grube, M. (2014) Phycobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Annals of Botany 114: 463475.Google Scholar
Ohmura, Y., Kawachi, M., Kasai, F., Watanabe, M. M. & Takeshita, S. (2006) Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109: 4359.Google Scholar
Peksa, O. & Škaloud, P. (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Molecular Ecology 20: 39363948.Google Scholar
Piercey-Normore, M. D. (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii . New Phytologist 169: 331344.Google Scholar
Piercey-Normore, M. D. & Deduke, C. (2011) Fungal farmers or algal escorts: lichen adaptation from the algal perspective. Molecular Ecology 20: 37083710.CrossRefGoogle ScholarPubMed
Piercey-Normore, M. D. & DePriest, P. T. (2001) Algal switching among lichen symbioses. American Journal of Botany 88: 14901498.Google Scholar
Roca-Valiente, B., Divakar, P. K., Ohmura, Y., Hawksworth, D. L. & Crespo, A. (2013) Molecular phylogeny supports the recognition of the two morphospecies Parmotrema pseudotinctorum and P. tinctorum (Parmeliaceae, Ascomycota). Vieraea 41: 333348.CrossRefGoogle Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.Google Scholar
Ryšánek, D., Holzinger, A. & Škaloud, P. (2016) Influence of substrate and pH on the diversity of aeroterrestrial alga Klebsormidium (Klebsormidiales, Streptohyta): a potentially important factor for sympatric speciation. Phycologia 55: 347358.Google Scholar
Sadowska-Deś, A. D., Dal Grande, F., Lumbsch, H. T., Beck, A., Otte, J., Hur, J.-S., Kim, J. A. & Schmitt, I. (2014) Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia . Molecular Phylogenetics and Evolution 76: 202210.CrossRefGoogle ScholarPubMed
Schmull, M., Miadlikowska, J., Pelzer, M., Stocker-Wörgötter, E., Hofstetter, V., Fraker, E., Hodkinson, B. P., Reeb, V., Kukwa, M., Lumbsch, H. T. & Kauff, F. (2011) Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia 103: 9831003.Google Scholar
Škaloud, P. & Rindi, F. (2013) Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). Journal of Eukaryotic Microbiology 60: 350362.CrossRefGoogle ScholarPubMed
Tschermak-Woess, E. (1988) The algal partner. In CRC Handbook of Lichenology (M. Galun, ed.): 3992. Boca Raton: CRC Press.Google Scholar
Vančurová, L., Peksa, O., Němcová, Y. & Škaloud, P. (2015) Vulcanochloris (Trebouxiales, Trebouxiophyceae), a new genus of lichen photobiont from La Palma, Canary Islands, Spain. Phytotaxa 219: 118132.CrossRefGoogle Scholar
Voytsekhovich, A. & Beck, A. (2016) Lichen photobionts of the rocky outcrops of Karadag massif (Crimean Peninsula). Symbiosis 68: 924.Google Scholar
Yahr, R., Vilgalys, R. & Depriest, P. T. (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology 13: 33673378.Google Scholar
Zwickl, D. J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. thesis, University of Texas at Austin.Google Scholar
Supplementary material: File

Škaloud et al. supplementary material

Škaloud et al. supplementary material 1

Download Škaloud et al. supplementary material(File)
File 18.9 KB