Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T03:19:24.136Z Has data issue: false hasContentIssue false

Two new lecanoroid Caloplaca (Teloschistaceae) species from gneiss inselbergs in equatorial Brazil, with a key to tropical lecanoroid species of Caloplaca s. lat.

Published online by Cambridge University Press:  03 May 2016

André APTROOT
Affiliation:
ABL Herbarium, G.v.d.Veenstraat 107, NL-3762 XK Soest, The Netherlands. Email: [email protected]
Marcela Eugenia da Silva CÁCERES
Affiliation:
Departamento de Biociências, Universidade Federal de Sergipe, CEP: 49500-000, Itabaiana, Sergipe, Brazil

Abstract

Gneiss inselbergs in the Caatinga region of Ceará in equatorial Brazil are literally covered with a wide diversity of caloplacoid lichens. This includes two closely related new saxicolous species of Caloplaca, both with the aspect of a Lecanora of the subfusca-aggregate: C. lecanorocarpa has a grey areolate bullate thallus with atranorin on a black prothallus, grey thalline apothecium margin, sessile apothecia with glossy dark brown disc, and ascospores of 10–12×5·0–5·5 μm, with a 5·0–5·5 μm thick septum; and the similar, related C. lecapustulata which mainly differs by the rimose thallus with irregular mushroom-shaped pustules. The phylogenetic position of the two new species has been assessed to be within the Caloplacoideae. A key to all tropical lecanoroid Caloplaca species is provided.

Type
Articles
Copyright
© British Lichen Society, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, M. M. E., Aptroot, A., Lacerda, S. R. & Cáceres, M. E. S. (2014 a) A new Eschatogonia species and two new Gassicurtia species from Chapada do Araripe, Ceará, NE Brazil. Bryologist 117: 5053.Google Scholar
Alves, M. M. E., Aptroot, A., Lacerda, S. R. & Cáceres, M. E. S. (2014 b) Three new Arthoniaceae from Chapada do Araripe, Ceará, NE Brazil. Lichenologist 46: 663667.Google Scholar
Aptroot, A. (2001) Lichens from Gambia, with a new black-fruiting isidiate Caloplaca on savannah trees. Cryptogamie, Mycologie 22: 265270.Google Scholar
Aptroot, A. & Seaward, M. R. D. (1999) Annotated checklist of Hong Kong lichens. Tropical Bryology 17: 57101.Google Scholar
Arup, U., Søchting, U. & Frödén, P. (2013) A new taxonomy of the family Teloschistaceae. Nordic Journal of Botany 31: 1683.CrossRefGoogle Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for Basidiomycetes—application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.Google Scholar
Hafellner, J. & Poelt, J. (1979) Die Arten der Gattung Caloplaca mit plurilocularen Sporen (Meroplacis, Triophthalmidium, Xanthocarpia). Journal of the Hattori Botanical Laboratory 46: 141.Google Scholar
Kondratyuk, S. Y., Jeong, M.-H., Yu, N.-N., Kärnefelt, I., Thell, A., Elix, J. A., Kim, J., Kondratyuk, A. & Hur, J.-S. (2014) A revised taxonomy for the subfamily Caloplacoideae (Teloschistaceae, Ascomycota) based on molecular phylogeny. Acta Botanica Hungarica 56: 93123.CrossRefGoogle Scholar
Menezes, A. A., Xavier-Leite, A. B., de Jesus, K. A., Aptroot, A. & Cáceres, M. E. S. (2013) Two new Crypthonia species and a new Syncesia from Chapada do Araripe, Ceara, NE Brazil (Ascomycota: Arthoniales), with a key to Crypthonia . Lichenologist 45: 657664.Google Scholar
Menezes, A. A., Xavier-Leite, A. B., Aptroot, A., Lücking, R. & Cáceres, M. E. S. (2015) Liquens da Chapada do Araripe. In Sociobiodiversidade na Chapada do Araripe (U. P. Albuquerque & M. V. Meiado, eds): 4968. Recife, Brazil: Nupeea & Bauru, SP: Canal 6.Google Scholar
Murray, M. G. & Thompson, W. F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8: 43214325.Google Scholar
Nylander, J. A. A. (2004) MrModeltest v2. Uppsala, Evolutionary Biology Centre, Uppsala University: Program distributed by the author.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.CrossRefGoogle ScholarPubMed
Šoun, J., Vondrák, J., Søchting, U., Hrouzek, P., Khodosovtsev, A. & Arup, A. (2011) Taxonomy and phylogeny of the Caloplaca cerina group in Europe. Lichenologist 43: 113135.Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.Google Scholar
Swofford, D. L. (2001) PAUP*4.0b10: Phylogenetic Analysis Using Parsimony (* and Other Methods). Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 27312739.Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White, eds): 315322. New York: Academic Press.Google Scholar