Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T11:40:48.680Z Has data issue: false hasContentIssue false

Tidying up the genus Letharia: introducing L. lupina sp. nov. and a new circumscription for L. columbiana

Published online by Cambridge University Press:  27 September 2016

Susanne ALTERMANN*
Affiliation:
Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362USA
Steven D. LEAVITT
Affiliation:
Science & Education, The Field Museum, Chicago, Illinois, USA
Trevor GOWARD
Affiliation:
UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. Mailing address: Enlichened Consulting Ltd., 5369 Clearwater Valley Road, Upper Clearwater, BC V0E 1N1, Canada

Abstract

Western North America is the global centre of diversity for Letharia, a distinctive and cryptically diverse genus of lichenized fungi belonging to the Parmeliaceae. The genus is characterized by a shrubby, fruticose habit and presence of vulpinic acid. Previous studies using multiple fungal nuclear loci revealed the existence of two distinct species-level lineages within the traditional concept of L. vulpina and four such lineages within L. columbiana. Here we use molecular sequence data in an attempt to settle long-standing taxonomic issues in the genus. Our results confirm the widespread existence within L. vulpina s. lat. of two distinct species-level groups, each forming a mutually exclusive partnership with a separate algal clade within Trebouxia jamesii s. lat. Accordingly, we formally describe the segregate species L. lupina sp. nov. Our results also support the evolutionary independence of four candidate species previously circumscribed from L. columbiana s. lat. One of these lineages, L. ‘gracilis’, has already received species recognition as L. gracilis, while a second, L. ‘lucida’, is epitypified here against L. columbiana s. str. Based on results from species delimitation analyses under the multispecies coalescent model, the two remaining lineages, L. ‘barbata’ and L. ‘rugosa’, also warrant formal taxonomic recognition; however, we refrain from describing these species pending additional studies of diagnostic characters, ecological preference, and distributions.

Type
Articles
Copyright
© British Lichen Society, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharius, E. (1810) Lichenographia Universalis. Gottingae: Danckwerts.Google Scholar
Altermann, S. (2009) Geographic structure in a symbiotic mutualism. Ph.D. dissertation, University of California Santa Cruz.Google Scholar
Altermann, S., Leavitt, S. D., Goward, T., Nelsen, M. P. & Lumbsch, H. T. (2014) How do you solve a problem like Letharia? A new look at cryptic species in lichen-forming fungi using Bayesian clustering and SNPs from multilocus sequence data. PLoS ONE 9: e97556.Google Scholar
Ariyawansa, H. A., Hawksworth, D. L., Hyde, K. D., Jones, E. B. G., Maharachchikumbura, S. S. N., Manamgoda, D. S., Thambugala, K. M., Udayanga, D., Camporesi, E., Daranagama, A., et al. (2014) Epitypification and neotypification: guidelines with appropriate and inappropriate examples. Fungal Diversity 69: 5791.Google Scholar
Arnerup, J., Högberg, N. & Thor, G. (2004) Phylogenetic analysis of multiple loci reveal the population structure within Letharia in the Caucasus and Morocco. Mycological Research 108: 311316.Google Scholar
Bayerová, S., Kukwa, M. & Fehrer, J. (2005) A new species of Lepraria (lichenized ascomycetes) from Europe. Bryologist 108: 131138.Google Scholar
Brodo, I. M., Sharnoff, S. D. & Sharnoff, S. (2001) Lichens of North America. New Haven: Yale University Press.Google Scholar
Casselman, K. D. (1996) Lichen Dyes: A Source Book. Cheverie, Nova Scotia: Studio Vista Publications.Google Scholar
Chestnut, V. K. (1902) Plants used by the Indians of Mendocino County, California. Contributions from the United States National Herbarium 7(1900–1902):295422.Google Scholar
Crespo, A. & Lumbsch, H. T. (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1: 167170.Google Scholar
Crespo, A. & Pérez-Ortega, S. (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid 66S1: 7181.Google Scholar
Crespo, A., Mattsson, J.-E., Blanco, O., Divakar, P. K., Articus, K., Wiklund, E., Bawingan, P. A. & Wedin, M. (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution 44: 812824.Google Scholar
Culberson, W. L. (1969) Norstictic acid as a hymenial constituent of Letharia . Mycologia 61: 731736.Google Scholar
Deil, U. (1984) Zur Vegetation im Zentralen Rif (Nordmarokko) - unter besonderer Berücksichtigung der Zedernwälder und ihrer Ersatzgesellschaften. Dissertationes Botanicae 74: 1179.Google Scholar
Divakar, P. K., Blanco, O., Hawksworth, D. L. & Crespo, A. (2005 a) Molecular phylogenetic studies on the Parmotrema reticulatum (syn. Rimelia reticulata) complex, including the confirmation of P. pseudoreticulatum as a distinct species. Lichenologist 37: 5565.CrossRefGoogle Scholar
Divakar, P. K., Molina, M. C., Lumbsch, H. T. & Crespo, A. (2005 b) Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. Lichenologist 37: 3746.Google Scholar
Emmerich, R., Giez, I., Lange, O. & Proksch, P. (1993) Toxicity and antifeedant activity of lichen compounds against the polyphagous herbivorous insect Spodoptera littoralis . Phytochemistry 33: 13891394.Google Scholar
Falush, D., Stephens, M. & Pritchard, J. (2003 a) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 15671587.CrossRefGoogle ScholarPubMed
Falush, D., Wirth, T., Linz, B., Pritchard, J. K., Stephens, M., Kidd, M., Blaser, M. J., Graham, D. Y., Vacher, S., Perez-Perez, G. I., et al. (2003 b) Traces of human migrations in Helicobacter pylori populations. Science 299: 15821585.Google Scholar
Fenn, M. E., Geiser, L., Bachman, R., Blubaugh, T. J. & Bytnerowicz, A. (2007) Atmospheric deposition inputs and effects on lichen chemistry and indicator species in the Columbia River Gorge, USA. Environmental Pollution 146: 7791.Google Scholar
Gams, H. (1955) Das Rätsel der Verbreitung von Letharia vulpina . Svensk Botanisk Tidskrift 49: 2934.Google Scholar
Gärdenfors, U. (ed.) (2000) Rödlistade Arter i Sverige 2000 (The 2000 Red List of Swedish Species). Uppsala: ArtDatabanken SLU.Google Scholar
Geiser, L. H. & Neitlich, P. N. (2007) Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environmental Pollution 145: 203218.Google Scholar
Goward, T. (1999) The Lichens of British Columbia, Illustrated Keys. Part 2: Fruticose Species. Victoria, British Columbia: Ministry of Forests Research Program.Google Scholar
Högberg, N., Kroken, S., Thor, G. & Taylor, J. W. (2002) Reproductive mode and genetic variation suggest a North American origin of European Letharia vulpina . Molecular Ecology 11: 11911196.Google Scholar
Jovan, S. & Carlberg, T. (2007) Nitrogen content of Letharia vulpina tissue from forests of the Sierra Nevada, California: geographic patterns and relationships to ammonia estimates and climate. Environmental Monitoring and Assessment 129: 243251.Google Scholar
Jørgensen, P. M. (2014) Notes on the new Example 9 in Article 9.8 of the International Code of Nomenclature for algae, fungi, and plants. Taxon 63: 132133.Google Scholar
Jørgensen, P. M. & Kashiwadani, H. (2001) New and misunderstood species of Japanese Pannaria (Lichenes). Journal of Japanese Botany 76: 110.Google Scholar
Jørgensen, P. M., James, P. W. & Jarvis, C. E. (1994) Linnaean lichen names and their typification. Botanical Journal of the Linnean Society 114: 262405.Google Scholar
Katoh, K. & Toh, H. (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286298.Google Scholar
Katoh, K., Kuma, K., Toh, H. & Miyata, T. (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511518.Google Scholar
Kroken, S. (1999) Cryptic speciation and the role of sex in the lichenized fungus Letharia. Ph.D. thesis, University of California Berkeley.Google Scholar
Kroken, S. & Taylor, J. W. (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia . Bryologist 103: 645660.Google Scholar
Kroken, S. & Taylor, J. W. (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia . Mycologia 93: 3853.Google Scholar
LaGreca, S. (1999) A phylogenetic evaluation of the Ramalina americana chemotype complex (lichenized Ascomycota, Ramalinaceae) based on rDNA ITS sequence data. Bryologist 102: 602618.Google Scholar
Leavitt, S. D., Lumbsch, H. T., Stenroos, S. & St. Clair, L. L. (2013) Pleistocene speciation in North American lichenized fungi and the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PloS ONE 8: e85240.Google Scholar
Leavitt, S. D., Kraichak, E., Nelsen, M. P., Altermann, S., Divakar, P. K., Alors, D., Esslinger, T. L., Crespo, A. & Lumbsch, H. T. (2015 a) Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Molecular Ecology 24: 37793797.Google Scholar
Leavitt, S. D., Moreau, C. S. & Lumbsch, H. T. (2015 b) The dynamic discipline of species delimitation: progress toward effectively recognizing species boundaries in natural populations. In Recent Advances in Lichenology (D. K. Upreti, P. K. Divakar, V. Shukla & R. Bajpai, eds): 1144. New Delhi: Springer India.Google Scholar
Lumbsch, H. T. & Leavitt, S. D. (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Diversity 50: 5972.Google Scholar
Lutzoni, F., Pagel, M. & Reeb, V. (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411: 937940.Google Scholar
Lutzoni, F., Kauff, F., Cox, C. J., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T. Y., Baloch, E. et al. (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91: 14461480.Google Scholar
McCune, B. & Altermann, S. (2009) Letharia gracilis (Parmeliaceae), a new species from California and Oregon. Bryologist 112: 375378.CrossRefGoogle Scholar
Mead, G. R. (1972) The Ethnobotany of the California Indians: a Compendium of the Plants, Their Users, and Their Uses (Occasional Publications in Anthropology, Ethnology Series no. 30). Greeley, Colorado: Museum of Anthropology, University of Northern Colorado.Google Scholar
Miadlikowska, J., McCune, B. & Lutzoni, F. (2002) Pseudocyphellaria perpetua, a new lichen from western North America. Bryologist 105: 110.Google Scholar
Molina, M. C., Crespo, A., Blanco, O., Lumbsch, H. T. & Hawksworth, D. L. (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and β-tubulin sequences. Lichenologist 36: 3754.CrossRefGoogle Scholar
Nelsen, M. P. & Gargas, A. (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytologist 177: 264275.Google Scholar
Nuttall, T. (1834) A catalogue of a collection of plants made chiefly in the valleys of the Rocky Mountains or Northern Andes toward the sources of the Columbia River. Journal of the Academy of Natural Sciences of Philadelphia 7: 560.Google Scholar
O’Neill, E. M., Schwartz, R., Bullock, C. T., Williams, J. S., Shaffer, H. B., Aguilar-Miguel, X., Parra-Olea, G. & Weisrock, D. W. (2013) Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex. Molecular Ecology 22: 111129.Google Scholar
Otálora, M. A. G., Martínez, I., O’Brien, H., Molina, M. C., Aragón, G. & Lutzoni, F. (2010) Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Molecular Phylogenetics and Evolution 56: 10891095.Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945959.CrossRefGoogle ScholarPubMed
Rannala, B. (2015) The art and science of species delimitation. Current Zoology 61: 846853.CrossRefGoogle Scholar
Rannala, B. & Yang, Z. (2013) Improved reversible jump algorithms for Bayesian species delimitation. Genetics 194: 245253.Google Scholar
Ryan, B. D. (2002) Letharia . In Lichen Flora of the Greater Sonoran Desert Region (T. H. Nash III, B. D. Ryan, C. Gries & F. Bungartz, eds): 267270. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Santesson, C. G. (1939) Notiz über die giftige Fuchs- oder Wolfsflechte (Letharia vulpina (L.) Vain.). Arkiv för Botanik 29: 16.Google Scholar
Schade, A. (1955) Letharia vulpina (L.) Vain.–II. Ihr Vorkommen in der Neuen Welt und ihr Verhältnis zu Letharia californica (Lev.) Hue em. Feddes Repertorium 58: 179197.Google Scholar
Schneider, A. (1904) A Guide to the Study of Lichens. Boston: Knight and Miller.Google Scholar
Seymour, F. A., Crittenden, P. D., Wirtz, N., Øvstedal, D. O., Dyer, P. S. & Lumbsch, H. T. (2007) Phylogenetic and morphological analysis of Antarctic lichen-forming Usnea species in the group Neuropogon . Antarctic Science 19: 7182.Google Scholar
Sigal, L. L. & Nash, T. H. III, (1983) Lichen communities on conifers in Southern California mountains: an ecological survey relative to oxidant air pollution. Ecology 64: 13431354.Google Scholar
Slavíková-Bayerová, Š. & Orange, A. (2006) Three new species of Lepraria (Ascomycota, Stereocaulaceae) containing fatty acids and atranorin. Lichenologist 38: 503513.Google Scholar
Springer, M. S. & Gatesy, J. (2016) The gene tree delusion. Molecular Phylogenetics and Evolution 94: 133.Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.Google Scholar
Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758771.CrossRefGoogle ScholarPubMed
Stephenson, N. L. & Rundel, P. W. (1979) Quantitative variation and the ecological role of vulpinic acid and atranorin in the thallus of Letharia vulpina . Biochemical Systematics and Ecology 7: 263267.Google Scholar
Thomson, J. W. (1969) Letharia californica is Letharia columbiana (Lichenes). Taxon 18: 535537.Google Scholar
Tibell, L. & Beck, A. (2001) Morphological variation, photobiont association and ITS phylogeny of Chaenotheca phaeocephala and C. subroscida (Coniocybaceae, lichenized ascomycetes). Nordic Journal of Botany 21: 651660.Google Scholar
Tønsberg, T., Gauslaa, Y., Haugan, R. & Timdal, E. (1996) The threatened macrolichens of Norway, 1995. Sommerfeltia 23: 1258.Google Scholar
Trass, H. (1997) Lichen mapping in Europe: Letharia vulpina, Menegazzia terebrata . Proceedings of the Estonian Academy of Sciences, Biology, Ecology 46: 195213.Google Scholar
Turner, N. J. (1979) Plants in British Columbia Indian Technology, Handbook No. 38. Victoria: British Columbia Provincial Museum.Google Scholar
Vitikainen, O., Ahti, T., Kuusinen, M., Lommi, S. & Ulvinen, T. (1997) Checklist of lichens and allied fungi of Finland. Norrlinia 6: 1123.Google Scholar
Vobis, G. (1980) Bau und Entwicklung der Flechten-Pycnidien und ihrer Conidien. Bibliotheca Lichenologica 14: 1141.Google Scholar
Wornik, S. & Grube, M. (2010) Joint dispersal does not imply maintenance of partnerships in lichen symbioses. Microbial Ecology 59: 150157.Google Scholar
Yahr, R., Vilgalys, R. & Depriest, P. T. (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology 13: 33673378.Google Scholar
Yang, Z. (2015) The BPP program for species tree estimation and species delimitation. Current Zoology 61: 854865.Google Scholar
Yang, Z. & Rannala, B. (2010) Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America 107: 92649269.CrossRefGoogle ScholarPubMed
Yang, Z. & Rannala, B. (2014) Unguided species delimitation using DNA sequence data from multiple loci. Molecular Biology and Evolution 31: 31253135.Google Scholar
Supplementary material: File

Altermann supplementary material

Altermann supplementary material 1

Download Altermann supplementary material(File)
File 129.4 KB