Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T00:28:00.245Z Has data issue: false hasContentIssue false

A revision of species of the Parmelia saxatilis complex in the Iberian Peninsula with the description of P. rojoi, a new potentially relict species

Published online by Cambridge University Press:  11 November 2020

Ana Crespo
Affiliation:
Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040Madrid, Spain
Víctor J. Rico
Affiliation:
Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040Madrid, Spain
Elisa Garrido
Affiliation:
Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040Madrid, Spain
H. Thorsten Lumbsch
Affiliation:
Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL60605, USA
Pradeep K. Divakar*
Affiliation:
Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040Madrid, Spain
*
Author for correspondence: Pradeep K. Divakar. E-mail: [email protected]

Abstract

The species of the Parmelia saxatilis complex occurring in the Iberian Peninsula were revised. Eight species are accepted, including a new species found in southern Spain, described as P. rojoi A. Crespo, V. J. Rico & Divakar. The new species, which forms a sister-group relationship with P. saxatilis s. str., is rare in the Iberian Peninsula and is restricted to higher altitudes of northern and central Spain. Parmelia rojoi differs from P. saxatilis by generally narrower isidia and a more fragile thallus. The segregation of the new species is also supported by ITS (rDNA) and Mcm7 (MS456) phylogeny and multispecies coalescent-based approaches, including StarBEAST and BP&P. Furthermore, the divergence of P. rojoi is dated back to the Pleistocene, c. 2.13 Ma. A key to the identification of species from the P. saxatilis complex with their diagnostic features is provided. All species of the complex known from Europe are also found in the Iberian Peninsula. We hypothesize that P. rojoi is a relict species that survived the Pleistocene glaciations in refugia in Spain and has been unable to extend its distributional range in postglacial periods.

Type
Standard Papers
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of the British Lichen Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716723.CrossRefGoogle Scholar
Alors, D, Dal Grande, F, Cubas, P, Crespo, A, Schmitt, I, Molina, MC and Divakar, PK (2017) Panmixia and dispersal from the Mediterranean Basin to Macaronesian Islands of a macrolichen species. Scientific Reports 7, 40879.CrossRefGoogle ScholarPubMed
Amo de Paz, G, Crespo, A, Cubas, P, Elix, JA and Lumbsch, HT (2012) Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla group (Ascomycota). PLoS ONE 7, e39683.Google Scholar
Barreno, E (1991) Phytogeography of terricolous lichens in the Iberian Peninsula and the Canary Islands. Botanika Chronika 10, 199210.Google Scholar
Bouckaert, R, Heled, J, Kuehnert, D, Vaughan, T, Wu, C-H, Xie, D, Suchard, MA, Rambaut, A and Drummond, AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.CrossRefGoogle ScholarPubMed
Castresana, J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540552.CrossRefGoogle ScholarPubMed
Corsie, EI, Harrold, P and Yahr, R (2019) No combination of morphological, ecological or chemical characters can reliably diagnose species in the Parmelia saxatilis aggregate in Scotland. Lichenologist 51, 107121.CrossRefGoogle Scholar
Crespo, A and Cubero, OF (1998) A molecular approach to the circumscription and evaluation of some genera segregated from Parmelia s. lat. Lichenologist 30, 369380.CrossRefGoogle Scholar
Crespo, A, Bridge, PD, Cubero, OF and Hawksworth, DL (1997) Determination of genotypic variability in the lichen-forming fungus Parmelia sulcata. Bibliotheca Lichenologica 68, 7379.Google Scholar
Crespo, A, Bridge, PD, Hawksworth, DL, Grube, M and Cubero, OF (1999) Comparison of rRNA genotype frequencies of Parmelia sulcata from long established and recolonizing sites following sulphur dioxide amelioration. Plant Systematics and Evolution 217, 177183.CrossRefGoogle Scholar
Crespo, A, Blanco, O and Hawksworth, DL (2001) The potential of mitochondrial DNA for establishing phylogeny and stabilising generic concepts in the parmelioid lichens. Taxon 50, 807819.CrossRefGoogle Scholar
Crespo, A, Molina, MC, Blanco, O, Schroeter, B, Sancho, LG and Hawksworth, DL (2002) rDNA ITS and beta-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycological Research 106, 788795.CrossRefGoogle Scholar
Crespo, A, Kauff, F, Divakar, PK, Del-Prado, R, Pérez-Ortega, S, Amo de Paz, G, Ferencova, Z, Blanco, O, Roca-Valiente, B, Núñez-Zapata, J, et al. (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59, 17351753.CrossRefGoogle Scholar
Cubas, P, Lumbsch, HT, Del-Prado, R, Ferencova, Z, Hladun, NL and Divakar, PK (2018) Historical biogeography of the lichenized fungal genus Hypotrachyna (Parmeliaceae, Ascomycota): insights into the evolutionary history of a pantropical clade. Lichenologist 50, 283298CrossRefGoogle Scholar
de Heredia, UL, Carrion, JS, Jimenez, P, Collada, C and Gil, L (2007) Molecular and palaeoecological evidence for multiple glacial refugia for evergreen oaks on the Iberian Peninsula. Journal of Biogeography 34, 15051517.CrossRefGoogle Scholar
Del-Prado, R, Blanco, O, Lumbsch, HT, Divakar, PK, Elix, JA, Molina, MC and Crespo, A (2013) Molecular phylogeny and historical biogeography of the lichen-forming fungal genus Flavoparmelia (Ascomycota: Parmeliaceae). Taxon 62, 928939.CrossRefGoogle Scholar
Divakar, PK, Molina, MC, Lumbsch, HT and Crespo, A (2005) Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. Lichenologist 37, 3746.CrossRefGoogle Scholar
Divakar, PK, Crespo, A, Wedin, M, Leavitt, SD, Hawksworth, DL, Myllys, L, McCune, B, Randlane, T, Bjerke, JW, Ohmura, Y, et al. (2015) Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi. New Phytologist 208, 12171226.CrossRefGoogle Scholar
Divakar, PK, Leavitt, SD, Carmen Molina, M, Del-Prado, R, Lumbsch, HT and Crespo, A (2016) A DNA barcoding approach for identification of hidden diversity in Parmeliaceae (Ascomycota): Parmelia sensu stricto as a case study. Botanical Journal of the Linnean Society 180, 2129.CrossRefGoogle Scholar
Divakar, PK, Wei, XL, McCune, B, Cubas, P, Boluda, CG, Leavitt, SD, Crespo, A, Tchabanenko, S and Lumbsch, HT (2019) Parallel Miocene dispersal events explain the cosmopolitan distribution of the Hypogymnioid lichens. Journal of Biogeography 46, 945955.CrossRefGoogle Scholar
Dowton, M, Meiklejohn, K, Cameron, SL and Wallman, J (2014) A preliminary framework for DNA barcoding, incorporating the multispecies coalescent. Systematic Biology 63, 639644.CrossRefGoogle ScholarPubMed
Drummond, AJ and Rambaut, A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.CrossRefGoogle ScholarPubMed
Drummond, AJ, Suchard, MA, Xie, D and Rambaut, A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 19691973.CrossRefGoogle ScholarPubMed
Elvebakk, A, Bjerke, JW and Stovern, LE (2014) Parmelioid lichens (Parmeliaceae) in southernmost South America. Phytotaxa 173, 130.CrossRefGoogle Scholar
Fackovcova, Z, Slovak, M, Vdacny, P, Melicharkova, A, Zozomova-Lihova, J and Guttova, A (2019) Spatio-temporal formation of the genetic diversity in the Mediterranean dwelling lichen during the Neogene and Quaternary epochs. Molecular Phylogenetics and Evolution 144, 106704.CrossRefGoogle ScholarPubMed
Ferencova, Z, Cubas, P, Divakar, PK, Molina, MC and Crespo, A (2014) Notoparmelia, a new genus of Parmeliaceae (Ascomycota) based on overlooked anatomical features, phylogeny and distribution pattern. Lichenologist 46, 5167.CrossRefGoogle Scholar
Feuerer, T and Thell, A (2002) Parmelia ernstiae – a new macrolichen from Germany. Mitteilungen aus dem Institut für Allgemeine Botanik in Hamburg 30-32, 4960.Google Scholar
Galloway, DJ and Elix, JA (1983) The lichen genera Parmelia Ach. and Punctelia Krog, in Australasia. New Zealand Journal of Botany 21, 397420.CrossRefGoogle Scholar
Geml, J, Kauff, F, Brochmann, C and Taylor, DL (2010) Surviving climate changes: high genetic diversity and transoceanic gene flow in two arctic-alpine lichens, Flavocetraria cucullata and F. nivalis (Parmeliaceae, Ascomycota). Journal of Biogeography 37, 15291542.Google Scholar
Grewe, F, Lagostina, E, Wu, H, Printzen, C and Lumbsch, HT (2018) Population genomic analyses of RAD sequences resolves the phylogenetic relationship of the lichen-forming fungal species Usnea antarctica and Usnea aurantiacoatra. MycoKeys 43, 91113.CrossRefGoogle Scholar
Hale, ME (1987) A monograph of the lichen genus Parmelia Acharius sensu stricto (Ascomycotina: Parmeliaceae). Smithsonian Contributions to Botany 66, 155.CrossRefGoogle Scholar
Hawksworth, DL, Blanco, O, Divakar, PK, Ahti, T and Crespo, A (2008) A first checklist of parmelioid and similar lichens in Europe and some adjacent territories, adopting revised generic circumscriptions and with indications of species distributions. Lichenologist 40, 121.CrossRefGoogle Scholar
Hawksworth, DL, Divakar, PK, Crespo, A and Ahti, T (2011) The checklist of parmelioid and similar lichens in Europe and some adjacent territories: additions and corrections. Lichenologist 43, 639645.CrossRefGoogle Scholar
Heled, J and Drummond, AJ (2010) Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27, 570580.CrossRefGoogle ScholarPubMed
Hewitt, G (2000) The genetic legacy of the Quaternary ice ages. Nature 405, 907913.CrossRefGoogle ScholarPubMed
Hewitt, GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359, 183195.CrossRefGoogle ScholarPubMed
Hillis, DM and Bull, JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182192.CrossRefGoogle Scholar
Hillmann, J (1936) Parmeliaceae. In Rabenhorst, GL (ed.), Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Leipzig: Borntraeger, pp. 1309.Google Scholar
Katoh, K and Toh, H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinformatics 9, 286298.CrossRefGoogle ScholarPubMed
Kurokawa, S (1976) A note on Parmelia omphalodes and its related species. Journal of Japanese Botany 51, 377380.Google Scholar
Leaché, AD and Fujita, MK (2010) Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proceedings of the Royal Society B: Biological Sciences 277, 30713077.CrossRefGoogle Scholar
Leavitt, SD, Esslinger, TL, Divakar, PK and Lumbsch, HT (2012 a) Miocene divergence, phenotypically cryptic lineages, and contrasting distribution patterns in common lichen-forming fungi (Ascomycota: Parmeliaceae). Biological Journal of the Linnean Society 107, 920937.CrossRefGoogle Scholar
Leavitt, SD, Esslinger, TL and Lumbsch, HT (2012 b) Neogene-dominated diversification in neotropical montane lichens: dating divergence events in the lichen-forming fungal genus Oropogon (Parmeliaceae). American Journal of Botany 99, 17641777.CrossRefGoogle Scholar
Leavitt, SD, Fernández-Mendoza, F, Pérez-Ortega, S, Sohrabi, M, Divakar, PK, Vondrák, J, Lumbsch, HT and St. Clair, LL (2013) Local representation of global diversity in a cosmopolitan lichen-forming fungal species complex (Rhizoplaca, Ascomycota). Journal of Biogeography 40, 17921806.CrossRefGoogle Scholar
Leavitt, SD, Divakar, PK, Crespo, A and Lumbsch, HT (2016) A matter of time – understanding the limits of the power of molecular data for delimiting species boundaries. Herzogia 29, 479492.CrossRefGoogle Scholar
Leavitt, SD, Kirika, PM, Amo de Paz, G, Huang, JP, Hur, J-S, Grewe, F, Divakar, PK and Lumbsch, HT (2018) Assessing phylogeny and historical biogeography of the largest genus of lichen-forming fungi, Xanthoparmelia (Parmeliaceae, Ascomycota). Lichenologist 50, 299312.CrossRefGoogle Scholar
Maheu, J and Gillet, A (1925) Contributions à l'étude des Lichens du Maroc II. Bulletin de la Société Botanique de France 72, 858–871.CrossRefGoogle Scholar
McCormack, JE, Heled, J, Delaney, KS, Peterson, AT and Knowles, LL (2011) Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays. Evolution 65, 184202.CrossRefGoogle ScholarPubMed
Molina, MD, Crespo, A, Blanco, O, Lumbsch, HT and Hawksworth, DL (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and beta-tubulin sequences. Lichenologist 36, 3754.CrossRefGoogle Scholar
Molina, MC, Divakar, PK, Millanes, AM, Sanchez, E, Del-Prado, R, Hawksworth, DL and Crespo, A (2011 a) Parmelia sulcata (Ascomycota: Parmeliaceae), a sympatric monophyletic species complex. Lichenologist 43, 585601.CrossRefGoogle Scholar
Molina, MC, Del-Prado, R, Divakar, PK, Sánchez-Mata, D and Crespo, A (2011 b) Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae). Organisms Diversity and Evolution 11, 331342.CrossRefGoogle Scholar
Molina, MC, Divakar, PK, Goward, T, Millanes, AM, Lumbsch, HT and Crespo, A (2017) Neogene diversification in the temperate lichen-forming fungal genus Parmelia (Parmeliaceae, Ascomycota). Systematics and Biodiversity 15, 166181.CrossRefGoogle Scholar
Moyle, RG, Filardi, CE, Smith, CE and Diamond, J (2009) Explosive Pleistocene diversification and hemispheric expansion of a “great speciator”. Proceedings of the National Academy of Sciences of the United States of America 106, 18631868.CrossRefGoogle ScholarPubMed
Núñez-Zapata, J, Cubas, P, Hawksworth, DL and Crespo, A (2015) Biogeography and genetic structure in populations of a widespread lichen (Parmelina tiliacea, Parmeliaceae, Ascomycota). PLoS ONE 10 : e0126981.CrossRefGoogle Scholar
Núñez-Zapata, J, Alors, D, Cubas, P, Divakar, PK, Leavitt, SD, Lumbsch, HT and Crespo, A (2017) Understanding disjunct distribution patterns in lichen-forming fungi: insights from Parmelina (Parmeliaceae, Ascomycota). Botanical Journal of the Linnean Society 184, 238253.CrossRefGoogle Scholar
Nylander, JAA, Wilgenbusch, JC, Warren, DL and Swofford, DL (2008) AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24, 581583.CrossRefGoogle ScholarPubMed
Orange, A, James, PW and White, FJ (2010) Microchemical Methods for the Identification of Lichens, 2nd Edn. London: British Lichen Society.Google Scholar
Ossowska, E, Guzow-Krzemińska, B, Kolanowska, M, Szczepańska, K and Kukwa, M (2019) Morphology and secondary chemistry in species recognition of Parmelia omphalodes group – evidence from molecular data with notes on the ecological niche modelling and genetic variability of photobionts. MycoKeys 61, 3974.CrossRefGoogle ScholarPubMed
Øvstedal, DO and Lewis Smith, RI (2001) Lichens of Antarctica and South Georgia: A Guide to Their Identification and Ecology. Cambridge: Cambridge University Press.Google Scholar
Poelt, J (1963) Flechtenflora und Eiszeit in Europa. Phyton 10, 206215.Google Scholar
Posada, D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.CrossRefGoogle ScholarPubMed
Postigo-Mijarra, JM, Morla, C, Barron, E, Morales-Molino, C and Garcia, S (2010) Patterns of extinction and persistence of Arctotertiary flora in Iberia during the Quaternary. Review of Palaeobotany and Palynology 162, 416426.CrossRefGoogle Scholar
Rambaut, A (2009) FigTree 1.2.2. [WWW resource] URL http://tree.bio.ed.ac.uk/software/figtree/.Google Scholar
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA and Huelsenbeck, JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Sala, N, Pablos, A, Gómez-Olivencia, A, Sanz, A, Villalba, M, Pantoja-Pérez, A, Laplana, C, Arsuaga, JL and Algaba, M (2020) Central Iberia in the middle MIS 3. Paleoecological inferences during the period 34–40 cal kyr BP. Quaternary Science Reviews 228, 106027.CrossRefGoogle Scholar
Sayers, EW, Barrett, T, Benson, DA, Bolton, E, Bryant, SH, Canese, K, Chetvernin, V, Church, DM, DiCuccio, M, Federhen, S, et al. (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 39, D38D51.CrossRefGoogle ScholarPubMed
Schmitt, I, Crespo, A, Divakar, PK, Fankhauser, JD, Herman-Sackett, E, Kalb, K, Nelsen, MP, Nelson, NA, Rivas-Plata, E, Shimp, AD, et al. (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23, 3540.CrossRefGoogle ScholarPubMed
Stamatakis, A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 26882690.CrossRefGoogle ScholarPubMed
Stamatakis, A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 13121313.CrossRefGoogle ScholarPubMed
Stamatakis, A, Hoover, P and Rougemont, J (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57 : 758771.CrossRefGoogle ScholarPubMed
Stenroos, S (1991) The lichen genera Parmelia and Punctelia in Tierra del Fuego. Annales Botanici Fennici 28, 241245.Google Scholar
Suc, JP (1984) Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307, 429432.CrossRefGoogle Scholar
Taberlet, P, Fumagalli, L, Wust-Saucy, AG and Cosson, JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7, 453464.CrossRefGoogle ScholarPubMed
Takamatsu, S and Matsuda, S (2004) Estimation of molecular clocks for ITS and 28S rDNA in Erysiphales. Mycoscience 45, 340344.CrossRefGoogle Scholar
Talavera, G and Castresana, J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564577.CrossRefGoogle ScholarPubMed
Thell, A, Elix, JA, Feuerer, T, Hansen, ES, Kärnefelt, I, Schüler, N and Westberg, M (2008) Notes on the systematics, chemistry and distribution of European Parmelia and Punctelia species (lichenized ascomycetes). Sauteria 15, 545559.Google Scholar
Thell, A, Thor, G and Ahti, T (2011) Parmelia. In Thell, A and Moberg, R (eds), Nordic Lichen Flora, Volume 4: Parmeliaceae. Uppsala: Nordic Lichen Society, pp. 8390.Google Scholar
Thell, A, Crespo, A, Divakar, PK, Kärnefelt, I, Leavitt, SD, Lumbsch, HT and Seaward, MRD (2012) A review of the lichen family Parmeliaceae – history, phylogeny and current taxonomy. Nordic Journal of Botany 30, 641664.CrossRefGoogle Scholar
Thell, A, Tsurykau, A, Persson, P-E, Hansson, M, Åsegård, E, Kärnefelt, I and Seaward, MRD (2017) Parmelia ernstiae, P. serrana and P. submontana, three species increasing in the Nordic countries. Graphis Scripta 29, 2432.Google Scholar
Tsurykau, A, Bely, P, Golubkov, V, Persson, P-E and Thell, A (2019) The lichen genus Parmelia (Parmeliaceae, Ascomycota) in Belarus. Herzogia 32, 375384.CrossRefGoogle Scholar
Yang, Z (2015) The BPP program for species tree estimation and species delimitation. Current Zoology 61, 854865.CrossRefGoogle Scholar
Yang, Z and Rannala, B (2014) Unguided species delimitation using DNA sequence data from multiple loci. Molecular Biology and Evolution 31, 31253135.CrossRefGoogle ScholarPubMed