Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T01:35:57.275Z Has data issue: false hasContentIssue false

Parmelia sulcata (Ascomycota: Parmeliaceae), a sympatric monophyletic species complex

Published online by Cambridge University Press:  05 October 2011

Maria del Carmen MOLINA
Affiliation:
Departamento de Biología y Geología, ESCET, Universidad Rey Juan Carlos, Móstoles, E-28933 Madrid, Spain.
Pradeep K. DIVAKAR
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain. Email: [email protected]
Ana M. MILLANES
Affiliation:
Departamento de Biología y Geología, ESCET, Universidad Rey Juan Carlos, Móstoles, E-28933 Madrid, Spain.
Edinson SÁNCHEZ
Affiliation:
Departamento de Biología y Geología, ESCET, Universidad Rey Juan Carlos, Móstoles, E-28933 Madrid, Spain.
Ruth DEL-PRADO
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain. Email: [email protected]
David L. HAWKSWORTH
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain. Email: [email protected]
Ana CRESPO
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain. Email: [email protected]

Abstract

Recently, the number of cryptic species known has increased considerably, showing that species diversity has in many cases been underestimated in the past. Parmelia sulcata is a widely distributed species and one of the most common taxa in temperate Europe. The first intra-specific molecular studies on P. sulcata showed an unexpectedly high genetic variability. In the present work, we study the biodiversity of this taxon including specimens from four continents and using three molecular markers (nuITS, nuIGS rDNA, and partial β-tubulin gene). Two monophyletic groups of P. sulcata were encountered; one of these is epitypified as P. sulcata s. str and the other one is segregated as the new cryptic species P. encryptata sp. nov. Issues surrounding the lectotypification of Parmelia sulcata have also been elucidated.

Type
Research Article
Copyright
Copyright © British Lichen Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argüello, A., del Prado, R., Cubas, P. & Crespo, A. (2007) Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morpho-species. Biological Journal of the Linnean Society 91: 455467.Google Scholar
Articus, K., Mattsson, J. E., Tibell, L., Grube, M. & Wedin, M. (2002) Ribosomal DNA and β-tubulin data do not support the separation of the lichens Usnea florida and U. subfloridana as distinct species. Mycological Research 106: 412418.CrossRefGoogle Scholar
Avise, J. C. (2000) Phylogeography. Boston, MA: Harvard University Press.Google Scholar
Begerow, D., John, B. & Oberwinkler, F. (2004) Evolutionary relationships among β-tubulin gene sequences of basidiomycetous fungi. Mycological Research 108: 12571263.Google Scholar
Besendahl, A., Qiu, Y. L., Lee, J., Palmer, J. D. & Bhattacharya, D. (2004) The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I intron. Current Genetics 37: 1223.CrossRefGoogle Scholar
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K. & Das, I. (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 3: 148155.Google Scholar
Carbone, I. & Kohn, L. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553556.CrossRefGoogle Scholar
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540552.CrossRefGoogle ScholarPubMed
Crespo, A. & Lumbsch, H. T. (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1: 167170.CrossRefGoogle ScholarPubMed
Crespo, A. & Pérez-Ortega, S. (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid 66: 7181.CrossRefGoogle Scholar
Crespo, A., Bridge, P. D. & Hawksworth, D. L. (1997) Amplification of fungal rDNA-ITS regions from non-fertile specimens of the lichen-forming genus Parmelia. Lichenologist 29: 275282.Google Scholar
Crespo, A., Bridge, P. D., Hawksworth, D. L., Grube, M. & Cubero, O. F. (1999) Comparison of rRNA genotype frequencies of Parmelia sulcata from long established and recolonizing sites following sulphur dioxide amelioration. Plant Systematics and Evolution 217: 177183.Google Scholar
Crespo, A., Blanco, O. & Hawksworth, D. L. (2001) The potential of mitochondrial DNA for establishing phylogeny and stablising generic concepts in the parmelioid lichens. Taxon 50: 807819.CrossRefGoogle Scholar
Crespo, A., Molina, M. C., Blanco, O., Schroeter, B., Sancho, L. G. & Hawksworth, D. L. (2002) rDNA ITS and β-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycological Research 106: 788795.Google Scholar
Crespo, A., Divakar, P. K., Argüello, A., Gasca, C. & Hawksworth, D. L. (2004) Molecular studies on Punctelia species of the Iberian Peninsula, with an emphasis on specimens newly colonizing Madrid. Lichenologist 36: 299308.Google Scholar
Del-Prado, R., Cubas, P., Lumbsch, H. T., Divakar, P. K., Blanco, O., Amo de Paz, G., Molina, M. C. & Crespo, A. (2010) Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Molecular Phylogenetics and Evolution 56: 125133.CrossRefGoogle ScholarPubMed
Del-Prado, R., Divakar, P. K. & Crespo, A. (2011) Using genetic distances in addition to ITS molecular phylogeny to identify potential species in the Parmotrema reticulatum complex: a case study. Lichenologist 43: 569583.CrossRefGoogle Scholar
DePriest, P. T. & Been, M. D. (1992) Numerous group I introns with variable distributions in the ribosomal DNA of a lichen fungus. Journal of Molecular Biology 228: 315321.CrossRefGoogle Scholar
de Queiroz, K. (2005a) Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Science, USA 102: 66006607.Google Scholar
de Queiroz, K. (2005b) Different species problems and their resolution. BioEssays 27: 12631269.Google Scholar
Dettman, J. R., Jacobson, D. J. & Taylor, J. W. (2003) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57: 27032720.Google Scholar
Divakar, P. K., Upreti, D. K. & Elix, J. A. (2001) New species and new records in the lichen family Parmeliaceae (Ascomycotina) from India. Mycotaxon 80: 355362.Google Scholar
Divakar, P. K., Molina, M. C., Lumbsch, H. T. & Crespo, A. (2005a) Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. Lichenologist 37: 3746.Google Scholar
Divakar, P. K., Blanco, O., Hawksworth, D. L. & Crespo, A. (2005b) Molecular phylogenetic studies on the Parmotrema reticulatum (syn. Rimelia reticulata) complex, including the confirmation of P. pseudoreticulatum. Lichenologist 37: 5565.Google Scholar
Divakar, P. K., Amo De paz, G., del Prado, R., Esslinger, T. G. & Crespo, A. (2007) Upper cortex anatomy corroborates phylogenetic hypothesis in species of Physconia (Ascomycota, Lecanoromycetes). Mycological Research 111: 13111320.CrossRefGoogle ScholarPubMed
Divakar, P. K., Figueras, G., Hladun, N. L. & Crespo, A. (2010) Molecular phylogenetic studies reveal an undescribed species within the North American concept of Melanelixia glabra (Parmeliaceae). Fungal Diversity 42: 4755.Google Scholar
Donoghue, M. J. A (1985) Critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 88: 172181.CrossRefGoogle Scholar
Elix, J. A. & Ernst-Russell, K. D. (1993) A Catalogue of Standardized Thin Layer Chromatographic Data and Biosynthetic Relationships for Lichen Substances. 2nd edn. Canberra: Australian National University.Google Scholar
Fehrer, J., Slavikova-Bayerova, S. & Orange, A. (2008) Large genetic divergence of new, morphologically similar species of sterile lichens from Europe (Lepraria, Stereocaulaceae, Ascomycota): concordance of DNA sequence data with secondary metabolites. Cladistics 24: 443458.Google Scholar
Felsenstein, J. (1985) Confidence limits on phylogenies. An approach using the bootstrap. Evolution 39: 783791.Google Scholar
Feuerer, T. & Thell, A. (2002) Parmelia ernstiae – a new macrolichen from Germany. Mitteilungen aus dem Institut für Allgemeine Botanik in Hamburg 30–32: 4960.Google Scholar
Galloway, D. J. & Elix, J. (1983) The lichen genera Parmelia and Punctelia Krog in Australasia. New Zealand Journal of Botany 21: 397420.Google Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rust. Molecular Ecology 2: 113118.Google Scholar
Grube, M., Gutmann, B., Arup, U., de los Ríos, A., Mattson, J. E. & Wedin, M. (1999) An exceptional group-I intron-like insertion in the SSU rDNA of lichen mycobionts. Current Genetics 35: 536541.Google Scholar
Guindon, S. & Gascuel, O. (2003) PhyML – A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696704.CrossRefGoogle ScholarPubMed
Gutiérrez, G., Blanco, O., Divakar, P. K., Lumbsch, H. T. & Crespo, A. (2007) Patterns of group I intron presence in nuclear SU rDNA of the lichen family Parmeliaceae. Journal Molecular Evolution 64: 181195.Google Scholar
Hale, M. E. (1987) A monograph of the lichen genus Parmelia Acharius sensu stricto (Ascomycotina: Parmeliaceae). Smithsonian Contributions to Botany 66: 155.CrossRefGoogle Scholar
Hale, M. E. & Kurokawa, S. (1962) Parmelia species first described from the British Isles. Lichenologist 2: 15.CrossRefGoogle Scholar
Hawksworth, D. L. (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research 105: 14221432.Google Scholar
Hawksworth, D. L. & McManus, P. M. (1989) Lichen recolonization in London under conditions of rapidly falling sulphur dioxide levels, and the concept of zone skipping. Botanical Journal of the Linnean Society 100: 99109.Google Scholar
Hawksworth, D. L. & Rossman, A. Y. (1997) Where are all the undescribed fungi? Phytopathology 87: 888891.Google Scholar
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Science, USA 101: 1481214817.Google Scholar
Hillis, D. M. & Bull, J. J. ( 1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182192.Google Scholar
Hillmann, J. (1936) Parmeliaceae. Kryptogamen-Flora von Deutschland, Österreich und der Schweiz 9 (5): 1309.Google Scholar
Högnabba, F. & Wedin, M. (2003) Molecular phylogeny of the Sphaerophorus globosus species complex. Cladistics 19: 224232.Google Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.Google Scholar
Huelsenbeck, J. P., Rannala, B. & Masly, J. P. (2000) Accommodating phylogenetic uncertainty in evolutionary studies. Science 288: 23492350.CrossRefGoogle ScholarPubMed
Jackson, A. P., Vaughan, S. & Gull, K. (2006) Comparative genomics and concerted evolution of β-tubulin paralogs in Leishmania spp. BMC Genomics 7: 137149.CrossRefGoogle ScholarPubMed
Katoh, K. & Toh, H. (2008a) Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9: 212.Google Scholar
Katoh, K. & Toh, H. (2008b) Recent developments in the MAFFT multiple sequence alignment program. Briefing in Bioinformatics 9: 286298.CrossRefGoogle ScholarPubMed
Katoh, K., Misawa, K., Kuma, K., Miyata, T. (2002) MAFFT, a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 30593066.CrossRefGoogle ScholarPubMed
Kopaczevskaja, E. G., Makarevich, M. F., Oxner, A. N. & Rassadina, K. A. (1971) Handbook of the Lichens of the USSR. 1. Pertusariaceae, Lecanoraceae, and Parmeliaceae. Leningrad: Izdatlstvo “Nauka”.Google Scholar
Kroken, S. & Taylor, J. W. (2001) A gene genealogical approach to recognize phylogentic species boundaries in the lichenized fungus Letharia. Mycologia 93: 3853.Google Scholar
Linke, K., Hemmerich, J. & Lumbsch, H. T. (2003) Identification of Nostoc cyanobionts in some Peltigera species using a group I intron in the tRNALeu gene. Bibliotheca Lichenologica 86: 113118.Google Scholar
Lohtander, K., Myllys, L., Sundin, R., Källersjö, M. & Tehler, A. (1998) The species pair concept in the lichen Dendrographa leucophaea (Arthoniales): analyses based on ITS sequences. Bryologist 101: 404411.Google Scholar
Lumbsch, H. T. (2002) How objective are genera in euascomycetes? Perspectives in Plant Ecology, Evolution and Systematics 5: 91101.CrossRefGoogle Scholar
Lynge, B. (1921) Studies on the lichen flora of Norway, Videnskapsselskapets Skrifter, Mat.- naturv. Klasse 7: 1252.Google Scholar
Molina, M. C., Crespo, A., Blanco, O., Lumbsch, H. T. & Hawksworth, D. L. (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and β-tubulin sequences. Lichenologist 36: 3754.CrossRefGoogle Scholar
Molina, M. C., Del-Prado, R., Divakar, P. K., Sánchez-Mata, D. & Crespo, A. (2011) Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae). Organisms Diversity & Evolution (in press).Google Scholar
Msiska, Z. & Morton, J. B. (2009) Phylogenetic analysis of the Glomeromycota by partial β-tubulin gene sequences. Mycorrhiza 19: 247254.Google Scholar
Myllys, L., Lohtander, K., Källersjö, M. & Tehler, A. (1999) Sequence insertions and ITS data provide congruent information on Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Molecular Phylogenetics and Evolution 12: 295309.Google Scholar
Myllys, L., Lohtander, K. & Tehler, A. (2001) β-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia 93: 335343.CrossRefGoogle Scholar
Myllys, L., Stenroos, S., Thell, A. & Ahti, T. (2003) Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Molecular Phylogenetics and Evolution 27: 5869.Google Scholar
Nash III, T. H., Ryan, B. D., Gries, C. & Bungartz, F. (2002) Lichen Flora of the Greater Sonoran Desert Region. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Nelsen, M. P. & Gargas, A. (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytologist 177: 264275.Google Scholar
Nishida, H., Tajiri, Y. & Sugiyama, J. (1998) Multiple origins of fungal group I introns located in the same position of nuclear SSU rRNA gene. Journal of Molecular Evolution 46: 442448.Google Scholar
Nunez-Zapata, J., Divakar, P. K., Del Prado, R., Cubas, P., Hawksworth, D. L. & Crespo, A. (2011) Conundrums in species concepts: the discovery of a new cryptic species segregated from Parmelina tiliacea (Parmeliaceae, Ascomycota). Lichenologist 43: 603616.Google Scholar
O'Donnell, K., Cigelnik, E. & Nirenberg, H. I. (1998) Molecular systematic and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465493.CrossRefGoogle Scholar
Oksanen, I., Lohtander, K., Sivonen, K. & Rikkinen, J. (2004) Repeat-type distribution in trnL intron does not correspond with species phylogeny: comparison of the genetic markers 16S rRNA and trnL intron in heterocystous cyanobacteria. International Journal of Systematic and Evolutionary Microbiology 54: 765772.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Otalora, M. A., Martinez, I., Molina, M. C., Aragon, G. & Lutzoni, F. (2008) Phylogenetic relationships and taxonomy of the Leptogium lichenoides group (Collemataceae, Ascomycota) in Europe. Taxon 57: 907921.Google Scholar
Ozenda, P. & Clauzade, G. (1970) Les Lichens. Étude Biologique et Flore Illustrée. Paris: Masson & Cie.Google Scholar
Page, R. D. M. (1996) Treeview: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357358.Google ScholarPubMed
Piercey-Normore, M. D. (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytologist 169: 331344.Google Scholar
Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.Google Scholar
Posada, D. & Crandall, K. A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817818.Google Scholar
Pringle, A., Baker, D. M., Platt, J. L., Wares, J. P., Latge, J. P. & Taylor, J. W. (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59: 18861899.Google Scholar
Rodríguez, F., Oliver, J. F., Martín, A. & Medina, J. R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485501.Google Scholar
Sáez, A. G. & Lozano, E. (2005) Body doubles. Nature 433: 111.Google Scholar
Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502504.CrossRefGoogle ScholarPubMed
Shimodaira, H. & Hasegawa, M. (1999) Multiple comparisons of loglikelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 11141116.Google Scholar
Simon, D., Fewer, D., Friedl, T. & Bhattacharya, D. (2003) Phylogeny and self-splicing ability of the plastid tRNA-Leu group I intron. Journal of Molecular Evolution 57: 710-720.Google Scholar
Simon, D., Moline, J., Helms, G., Friedl, T. & Bhattacharya, D. (2005) Divergent histories of rDNA group I introns in the lichen family Physciaceae. Journal of Molecular Evolution 60: 434446.Google Scholar
Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W. & Wolseley, P.A. (eds) (2009) The Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Strimmer, K. & Rambaut, A. (2002) Inferring confidence sets of possibly mis-specified gene trees. Proceedings of the Royal Society of London, Biological Sciences 269: 137142.Google Scholar
Swofford, D. L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0b10. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564577.Google Scholar
Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S. & Matthew, C. F. (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 2132.Google Scholar
Taylor, T. (1836) Lichenes. In Flora Hibernica (Mackay, J. T., ed.) 2: 77157. Dublin: W. Curry.Google Scholar
Tehler, A. (1982) The species pair concept in lichenology. Taxon 31: 708717.Google Scholar
Thell, A. & Miao, V. (1999) Phylogenetic analysis of ITS and group I intron sequences from European and North American samples of cetrarioid lichens. Annales Botanici Fennici 34: 275286.Google Scholar
Thell, A., Stenroos, S. & Myllys, L. (2000) A DNA study of the Cetraria aculeata and C. islandica groups. Folia Cryptogamica Estonica 36: 95106.Google Scholar
Thell, A., Stenroos, S., Feuerer, T., Kärnefelt, I., Myllys, L. & Hyvönen, J. (2002) Phylogeny of cetrarioid lichens (Parmeliaceae) inferred from ITS and Beta-tubulin sequences, morphology, anatomy and secondary chemistry. Mycological Progress 1: 335354.CrossRefGoogle Scholar
Thell, A., Feuerer, T., Kärnefelt, I., Myllys, L. & Stenroos, S. (2004) Monophyletic groups within the Parmeliaceae identified by ITS rDNA, β-tubulin and GAPDH sequences. Mycological Progress 3: 297314.Google Scholar
Vondrák, J., Říha, P., Arup, U. & Søchting, U. (2009) The taxonomy of the Caloplaca citrina group (Teloschistaceae) in the Black Sea region: with contributions to the cryptic species concept in lichenology. Lichenologist 41: 571604.CrossRefGoogle Scholar
Wedin, M., Wiklund, E., Jørgensen, P.M. & Ekman, S. (2009) Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Molecular Phylogenetics and Evolution 53: 862871.Google Scholar
White, T. J., Bruns, T. D., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols a Guide to Methods and Applications (Innis, M. A., Gelfand, D. H. Sninsky, J. J. & White, T.J., eds): 315322. San Diego: Academic Press.Google Scholar
Wirtz, N., Printzen, C. & Lumbsch, H.T. (2008) The delimitation of Antarctic and bipolar species of Usnea, Neuropogon (Ascomycta, Lecanorales): a cohesion approach of species recognition for the Usena perpusilla complex. Mycological Research 112: 472484.Google Scholar
Zemlak, T. S., Ward, R. D., Connell, A. D., Holmes, B. H. & Hebert, P. D. N. (2009) DNA barcoding reveals overlooked marine fishes. Molecular Ecology Resources 9 (Suppl. 1): 237242.Google Scholar