Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T08:03:07.490Z Has data issue: false hasContentIssue false

The optimal extraction and stability of atranorin from lichens, in relation to solvent and pH

Published online by Cambridge University Press:  23 July 2018

Carlo VOS
Affiliation:
Department of Biology, 800 W University Parkway, Utah Valley University, Orem, Utah 84058, USA
Phillip MCKINNEY
Affiliation:
Department of Chemistry, 800 W University Parkway, Utah Valley University, Orem, Utah 84058, USA
Colby PEARSON
Affiliation:
Department of Biology, 800 W University Parkway, Utah Valley University, Orem, Utah 84058, USA
Erik HEINY
Affiliation:
Department of Mathematics, 800 W University Parkway, Utah Valley University, Orem, Utah 84058, USA
Gamini GUNAWARDENA
Affiliation:
Department of Chemistry, 800 W University Parkway, Utah Valley University, Orem, Utah 84058, USA

Abstract

Atranorin is a secondary metabolite found in many lichens. This compound can act as a photo-buffer, supporting its use as a marker of metabolic response to changes in light. In preliminary trials, atranorin was found to be unstable over time when in solution, potentially precluding its usefulness in this capacity. The present study tests the stability of atranorin in different extraction solvents and at different pH values over time using HPLC analysis. We found that atranorin is most stable in acetonitrile, among six tested solvents, and that the presence of strong acid or a strong base destabilizes the compound. We propose that atranorin breaks down through transesterification in methanol and ethanol until an equilibrium is reached, while a strong base breaks down atranorin through saponification and under acidic conditions, atranorin concentration significantly increases with time. Although atranorin levels were found to be stable in whole thallus extracts from fresh lichens using a leaching method, chemicals isolated using chromatographic separation showed similar breakdown to an atranorin standard. In future work on lichens atranorin should be extracted in acetonitrile or acetone without an added base or acid to yield the greatest stability and thus provide more accurate concentration values of atranorin with time using HPLC. The interactions of atranorin with acid and with chloroform need further study.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armaleo, D., Zhang, Y. & Cheung, S. (2008) Light might regulate divergently depside and depsidone accumulation in the lichen Parmotrema hypotropum by affecting thallus temperature and water potential. Mycologia 100: 565576.Google Scholar
Arup, U., Ekman, S., Lindblom, L. & Mattsson, J-E. (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25: 6171.Google Scholar
Augusto, S., Máguas, C., Matos, J., Pereira, M. J. & Branquinho, C. (2010) Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil, air and pine needles. Environmental Pollution 158: 483489.Google Scholar
Bačkorová, M., Jendželovský, R., Kello, M., Bačkor, M., Mikeš, J. & Fedoročko, P. (2012) Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicology in Vitro 26: 462468.Google Scholar
Barreto, R. S., Albuquerque-Júnior, R. L., Pereira-Filho, R. N., Quintans, J. S., Barreto, A. S., DeSantana, J. M., Santana-Filho, V. J., Santos, M. R., Bonjardim, L. R. & Araújo, A. A. (2013) Evaluation of wound healing activity of atranorin, a lichen secondary metabolite, on rodents. Revista Brasileira de Farmacognosia 23: 310319.Google Scholar
BeGora, M. D. & Fahselt, D. (2001) Usnic acid and atranorin concentrations in lichens in relation to bands of UV irradiance. Bryologist 104: 134140.Google Scholar
Bjerke, J. W., Elvebakk, A., Domínguez, E. & Dahlback, A. (2005) Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis . Phytochemistry 66: 337344.Google Scholar
Blanco, O., Crespo, A., Ree, R. H. & Lumbsch, H. T. (2006) Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Molecular Phylogenetics and Evolution 39: 5269.Google Scholar
Bossi, R., Rastogi, S. C., Bernard, G., Gimenez-Arnau, E., Johansen, J. D., Lepoittevin, J. P. & Menné, T. (2004) A liquid chromatography-mass spectrometric method for the determination of oak moss allergens atranol and chloroatranol in perfumes. Journal of Separation Science 27: 537540.Google Scholar
Bouaid, K. & Vicente, C. (1998) Chlorophyll degradation effected by lichen substances. Annales Botanici Fennici 35: 7174.Google Scholar
Bourgeois, G., Suire, C., Vivas, N. & Vitry, C. (1999) Atraric acid, a marker for epiphytic lichens in the wood used in cooperage: identification and quantification by GC/MS/(MS). Analusis 27: 281283.Google Scholar
Bugni, T. S., Andjelic, C. D., Pole, A. R., Rai, P., Ireland, C. M. & Barrows, L. R. (2009) Biologically active components of a Papua New Guinea analgesic and anti-inflammatory lichen preparation. Fitoterapia 80: 270273.Google Scholar
Cetin, H., Tufan-Cetin, O., Turk, A., Tay, T., Candan, M., Yanikoglu, A. & Sumbul, H. (2012) Larvicidal activity of some secondary lichen metabolites against the mosquito Culiseta longiareolata Macquart (Diptera: Culicidae). Natural Product Research 26: 350355.Google Scholar
Choudhary, M. I., Ali, M., Wahab, A.-t., Khan, A., Rasheed, S., Shyaula, S. L. & Rahman, A.-u. (2011) New antiglycation and enzyme inhibitors from Parmotrema cooperi . Science China Chemistry 54: 19261931.Google Scholar
Cordeiro, L. M., Iacomini, M. & Stocker-Wörgötter, E. (2004) Culture studies and secondary compounds of six Ramalina species. Mycological Research 108: 489497.Google Scholar
Culberson, C. F. (1972) Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method. Journal of Chromatography A 72: 113125.CrossRefGoogle ScholarPubMed
Culberson, C. F. & Johnson, A. (1982) Substitution of methyl tert.-butyl ether for diethyl ether in the standardized thin-layer chromatographic method for lichen products. Journal of Chromatography A 238: 483487.Google Scholar
Fazio, A. T., Bertoni, M. D., Adler, M. T., Ruiz, L. B., Rosso, M. L., Muggia, L., Hager, A., Stocker-Wörgötter, E. & Maier, M. S. (2009) Culture studies on the mycobiont isolated from Parmotrema reticulatum (Taylor) Choisy: metabolite production under different conditions. Mycological Progress 8: 359365.Google Scholar
Feige, G., Lumbsch, H. T., Huneck, S. & Elix, J. (1993) Identification of lichen substances by a standardized high-performance liquid chromatographic method. Journal of Chromatography A 646: 417427.Google Scholar
Garcia-Junceda, E., Gonzalez, A. & Vicente, C. (1987) Photosynthetical and nutritional implications in the accumulation of phenols in the lichen Pseudevernia furfuracea . Biochemical Systematics and Ecology 15: 289296.CrossRefGoogle Scholar
Gauslaa, Y. & Solhaug, K. A. (2004) Photoinhibition in lichens depends on cortical characteristics and hydration. Lichenologist 36: 133143.Google Scholar
Giez, I., Lange, O. L. & Proksch, P. (1994) Growth retarding activity of lichen substances against the polyphagous herbivorous insect Spodoptera littoralis . Biochemical Systematics and Ecology 22: 113120.Google Scholar
Güvenç, A., Akkol, E. K., Süntar, İ., Keleş, H., Yıldız, S. & Çalış, İ. (2012) Biological activities of Pseudevernia furfuracea (L.) Zopf extracts and isolation of the active compounds. Journal of Ethnopharmacology 144: 726734.Google Scholar
Hager, A., Brunauer, G., Türk, R. & Stocker-Wörgötter, E. (2008) Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. Journal of Chemical Ecology 34: 113120.Google Scholar
Hall, R. S. B., Bornman, J. F. & Björn, L. O. (2002) UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis . Journal of Photochemistry and Photobiology B: Biology 66: 1320.CrossRefGoogle Scholar
Hiserodt, R. D., Swijter, D. F. & Mussinan, C. J. (2000) Identification of atranorin and related potential allergens in oakmoss absolute by high-performance liquid chromatography–tandem mass spectrometry using negative ion atmospheric pressure chemical ionization. Journal of Chromatography A 888: 103111.CrossRefGoogle ScholarPubMed
Huneck, S. (1973) Nature of lichen substances. In The Lichens (V. Ahmadjian & M. E. Hale, eds): 495522. New York: Academic Press.CrossRefGoogle Scholar
Huovinen, K. (1987) A standard HPLC method for the analysis of aromatic lichen. Bibliotheca Lichenologica 25: 457466.Google Scholar
Kosanić, M., Manojlović, N., Janković, S., Stanojković, T. & Ranković, B. (2013) Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food and Chemical Toxicology 53: 112118.Google Scholar
Lohézic-Le Dévéhat, F., Legouin, B., Couteau, C., Boustie, J. & Coiffard, L. (2013) Lichenic extracts and metabolites as UV filters. Journal of Photochemistry and Photobiology B: Biology 120: 1728.Google Scholar
Manojlović, N., Ranković, B., Kosanić, M., Vasiljević, P. & Stanojković, T. (2012) Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine 19: 11661172.Google Scholar
Marante, F. T., Castellano, A. G., Rosas, F. E., Aguiar, J. Q. & Barrera, J. B. (2003) Identification and quantitation of allelochemicals from the lichen Lethariella canariensis: phytotoxicity and antioxidative activity. Journal of Chemical Ecology 29: 20492071.CrossRefGoogle Scholar
McEvoy, M., Nybakken, L., Solhaug, K. A. & Gauslaa, Y. (2006) UV triggers the synthesis of the widely distributed secondary lichen compound usnic acid. Mycological Progress 5: 221229.Google Scholar
Melo, M. G. D., dos Santos, J. P. A., Serafini, M. R., Caregnato, F. F., de Bittencourt Pasquali, M. A., Rabelo, T. K., da Rocha, R. F., Quintans, L., de Souza Araújo, A. A. & da Silva, F. A. (2011) Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicology in Vitro 25: 462468.Google Scholar
Mitrovic, T., Stamenkovic, S., Cvetkovic, V., Radulovic, N., Mladenovic, M., Stankovic, M., Topuzovic, M., Radojevic, I., Stefanovic, O., Vasic, S. et al. (2014) Platismatia glauca and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents. EXCLI Journal 13: 938953.Google Scholar
Molnár, K. & Farkas, E. (2011) Depsides and depsidones in populations of the lichen Hypogymnia physodes and its genetic diversity. Annales Botanici Fennici 48: 473482.Google Scholar
Neelakantan, S., Padmasani, R. & Seshadri, T. (1965) New reagents for the synthesis of depsides: methyl evernate, methyl lecanorate, evernic acid and atranorin. Tetrahedron 21: 35313536.Google Scholar
Nimis, P. L. & Skert, N. (2006) Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne . Environmental and Experimental Botany 55: 175182.Google Scholar
Nybakken, L. & Gauslaa, Y. (2007) Difference in secondary compounds and chlorophylls between fibrils and main stems in the lichen Usnea longissima suggests different functional roles. Lichenologist 39: 491494.Google Scholar
Nybakken, L. & Julkunen-Tiitto, R. (2006) UV-B induces usnic acid in reindeer lichens. Lichenologist 38: 477486.Google Scholar
Paul, A., Hauck, M. & Leuschner, C. (2009) Iron and phosphate uptake explains the calcifuge-calcicole behavior of the terricolous lichens Cladonia furcata subsp. furcata and C. rangiformis . Plant and Soil 319: 4956.Google Scholar
Pompilio, A., Pomponio, S., Di Vincenzo, V., Crocetta, V., Nicoletti, M., Piovano, M., Garbarino, J. A. & Di Bonaventura, G. (2013) Antimicrobial and antibiofilm activity of secondary metabolites of lichens against methicillin-resistant Staphylococcus aureus strains from cystic fibrosis patients. Future Microbiology 8: 281292.Google Scholar
Pöykkö, H., Hyvärinen, M. & Bačkor, N. (2005) Removal of lichen secondary metabolites affects food choice and survival of lichenivorous moth larvae. Ecology 86: 26232632.CrossRefGoogle Scholar
Ranković, B., Kosanić, M., Manojlović, N., Rančić, A. & Stanojković, T. (2014) Chemical composition of Hypogymnia physodes lichen and biological activities of some its major metabolites. Medicinal Chemistry Research 23: 408416.CrossRefGoogle Scholar
Rao, D. & LeBlanc, F. (1965) A possible role of atranorin in the lichen thallus. Bryologist 68: 284289.Google Scholar
Rundel, P. W. (1978) The ecological role of secondary lichen substances. Biochemical Systematics and Ecology 6: 157170.Google Scholar
Santesson, J. (1973) Identification and isolation of lichen substances. In The Lichens (V. Ahmadjian & M. E. Hale, eds): 633652. New York: Academic Press.Google Scholar
Sepulveda, B., Chamy, M. C., Piovano, M. & Areche, C. (2013) Lichens: might be considered as a source of gastroprotective molecules? Journal of the Chilean Chemical Society 58: 17501752.Google Scholar
Solhaug, K. A., Lind, M., Nybakken, L. & Gauslaa, Y. (2009) Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes . Flora 204: 4048.Google Scholar
Solhaug, K. A., Larsson, P. & Gauslaa, Y. (2010) Light screening in lichen cortices can be quantified by chlorophyll fluorescence techniques for both reflecting and absorbing pigments. Planta 231: 10031011.CrossRefGoogle ScholarPubMed
Stephenson, N. L. & Rundel, P. W. (1979) Quantitative variation and the ecological role of vulpinic acid and atranorin in the thallus of Letharia vulpina . Biochemical Systematics and Ecology 7: 263267.CrossRefGoogle Scholar
Stojanović, I. Ž., Radulović, N. S., Mitrović, T. L., Stamenković, S. M. & Stojanović, G. S. (2011) Volatile constituents of selected Parmeliaceae lichens. Journal of the Serbian Chemical Society 76: 987994.Google Scholar
Thomson, J. W. (1984) American Arctic Lichens, Vol. 1. New York: Columbia University Press.Google Scholar
Türk, H., Yılmaz, M., Tay, T., Türk, A. Ö. & Kıvanç, M. (2006) Antimicrobial activity of extracts of chemical races of the lichen Pseudevernia furfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Zeitschrift für Naturforschung C 61: 499507.Google Scholar
Whiton, J. C. & Lawrey, J. D. (1984) Inhibition of crustose lichen spore germination by lichen acids. Bryologist 87: 4243.Google Scholar