Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T02:42:01.087Z Has data issue: false hasContentIssue false

No combination of morphological, ecological or chemical characters can reliably diagnose species in the Parmelia saxatilis aggregate in Scotland

Published online by Cambridge University Press:  26 April 2019

Eleanor I. CORSIE
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK.
Paul HARROLD
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK.
Rebecca YAHR*
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK.
*
R. Yahr (corresponding author): Email: [email protected]

Abstract

The Parmelia saxatilis aggregate is comprised of three species in Europe, proposed to differ in morphological, distributional or chemical characters. In this study, we sampled nearly 200 thalli from five sites across a steep ecological gradient in Scotland to investigate the distribution of the species in the aggregate, and we characterized all specimens by morphological, chemical and ITS sequence variation. In our sample, 191 specimens were identified to species using ITS. We confirm that a PCR length assay can be used for separation of P. saxatilis s. str. from P. ernstiae and P. serrana because across our sample, P. saxatilis s. str. consistently includes a group I intron c. 200 bp. Using sequences for specimen identification, we test previously proposed characters to diagnose specimens and use multivariate analysis to identify the most consistent features which may be used for identification among species. First, we test lobe morphology, presence and amount of pruina, distribution of isidia, lobe tip colour, and chemistry. Second, we use classification trees that quantify the contributions of 1) morphological and chemical factors, and 2) morphological and ecological factors, to a priori ITS-barcoded specimens. Parmelia saxatilis s. str., P. ernstiae and P. serrana all occur across the sampled gradient but differ in the frequency of occurrence, with P. saxatilis s. str. more frequent in the relatively drier east, and P. ernstiae more frequent in the wetter west. Parmelia serrana was collected around a third as often as the other two species, but more frequently on tree branches than expected. For all the morphological characters examined, all the species show some overlap and no morphological features are diagnostic, though trends are apparent by species. The classification tree approach holds promise for discovering the most meaningful variation for field workers to approach correct identifications. Chemical variation using TLC is perhaps the best way to distinguish most specimens but, even here, overlap in chemosyndromes exists among the species.

Type
Articles
Copyright
Copyright © British Lichen Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Articus, K., Mattsson, J. E., Tibell, L., Grube, M. & Wedin, M. (2002) Ribosomal DNA and beta-tubulin data do not support the separation of the lichens Usnea florida and U. subfloridana as distinct species. Mycological Research 106: 412418.Google Scholar
Arup, U. & Berlin, E. S. (2011) A taxonomic study of Melanelixia fuliginosa in Europe. Lichenologist 43: 8997.Google Scholar
Arup, U., Ekman, S., Lindblom, L. & Mattsson, J.-E. (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25: 6171.Google Scholar
Bensch, K., Groenewald, J. Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B. A., Shin, H. D., Dugan, F. M., Schroers, H. J., Braun, U., et al. (2010) Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology 67: 194.Google Scholar
Crawley, M. J. (2013) The R Book, 2nd ed. Chichester: John Wiley & Sons, Ltd.Google Scholar
Crespo, A. & Lumbsch, H. T. (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1: 167170.Google Scholar
Crespo, A., Molina, M. C., Blanco, O., Schroeter, B., Sancho, L. G. & Hawksworth, D. L. (2002) rDNA ITS and beta-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycological Research 106: 788795.Google Scholar
DePriest, P. T. (1993) Small subunit rDNA variation in a population of lichen fungi due to optional group-I introns. Gene 134: 6774.Google Scholar
Divakar, P. K., Leavitt, S. D., Molina, M. C., Del-Prado, R., Lumbsch, H. T. & Crespo, A. (2015) A DNA barcoding approach for identification of hidden diversity in Parmeliaceae (Ascomycota): Parmelia sensu stricto as a case study. Botanical Journal of the Linnean Society 180: 2129.Google Scholar
Ellis, C. J. (2012) Lichen epiphyte diversity: a species, community and trait-based review. Perspectives in Plant Ecology Evolution and Systematics 14: 131152.Google Scholar
Ellis, C. J. (2018) A mechanistic model of climate change risk: growth rates and microhabitat specificity for conservation priority woodland epiphytes. Perspectives in Plant Ecology, Evolution and Systematics 32: 3848.Google Scholar
Feuerer, T. & Thell, A. (2002) Parmelia ernstiae – a new macrolichen from Germany. Mitteilungen aus dem Institut für Allgemeine Botanik in Hamburg 30: 4960.Google Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.Google Scholar
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307321.Google Scholar
Hauck, M., Jürgens, S.-R., Brinkmann, M. & Herminghaus, S. (2007) Surface hydrophobicity causes SO2 tolerance in lichens. Annals of Botany 101: 531539.Google Scholar
Hawksworth, D. L. & Lücking, R. (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum 5: doi: 10.1128/microbiolspec.FUNK-0052-2016.Google Scholar
Horton, T. R. & Bruns, T. D. (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology 10: 18551871.Google Scholar
Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26: 680682.Google Scholar
Katoh, K. & Toh, M. (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511518.Google Scholar
Kotelko, R. & Piercey-Normore, M. D. (2010) Cladonia pyxidata and C. pocillum; genetic evidence to regard them as conspecific. Mycologia 102: 534545.Google Scholar
Louwhoff, S. H. J. J. & Esslinger, T. L. (2009) Melanelixia. In The Lichens of Great Britain and Ireland (Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W. & Wolseley, P. A., eds): 571573. London: Natural History Museum.Google Scholar
Lücking, R., Dal-Forno, M., Sikaroodi, M., Gillevet, P. M., Bungartz, F., Moncada, B., Yánez-Ayabaca, A., Chaves, J. L., Coca, L. F. & Lawrey, J. D. (2014) A single macrolichen constitutes hundreds of unrecognized species. Proceedings of the National Academy of Sciences of the United States of America 111: 1109111096.Google Scholar
MacDonald, P. L. & Gardner, R. C. (2000) Type I error rate comparisons of post hoc procedures for I j chi-square tables. Educational and Psychological Measurement 60: 735754.Google Scholar
Maindonald, J. & Braun, W. J. (2010) Data Analysis and Graphics Using R: An Example-Based Approach, 3rd Edition (Cambridge Series in Statistical and Probabilistic Mathematics). New York: Cambridge University Press.Google Scholar
Mattsson, J. E., Lattman, H., Divakar, P. K. & Crespo, A. (2013) The Parmelia saxatilis complex: Parmelia serrana new to Sweden. URL: https://www.ifm.liu.se/biology/ecology/conservation_ecology/posters/poster_files/Parmelia-saxatilis.pdfGoogle Scholar
McCune, B. (2007) Improved estimates of incident radiation and heat load using non-parametric regression against topographic variables. Journal of Vegetation Science 18: 751754.Google Scholar
Met Office (2016) UK Climate. [WWW resource] URL https://www.metoffice.gov.uk/public/weather/climate/. [Accessed June 2016].Google Scholar
Molina, M. C., Crespo, A., Blanco, O., Lumbsch, H. T. & Hawksworth, D. L. (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and beta-tubulin sequences. Lichenologist 36: 3754.Google Scholar
Molina, M. C., Del-Prado, R., Divakar, P. K., Sánchez-Mata, D. & Crespo, A. (2011) Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae). Organisms, Diversity and Evolution 11: 331342.Google Scholar
Moncada, B., Lucking, R. & Suarez, A. (2014) Molecular phylogeny of the genus Sticta (lichenized Ascomycota: Lobariaceae) in Colombia. Fungal Diversity 64: 205231.Google Scholar
NCBI Resource Coordinators (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 44: D7D19.Google Scholar
O'Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., et al. (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research 44: D733D745.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Ossowska, E., Guzow-Krzemińska, B., Dudek, M., Oset, M. & Kukwa, M. (2018) Evaluation of diagnostic chemical and morphological characters in five Parmelia species (Parmeliaceae, lichenized Ascomycota) with special emphasis on the thallus pruinosity. Phytotaxa 383: 165180.Google Scholar
Samarakoon, T., Wang, S. Y. & Alford, M. H. (2013) Enhancing PCR amplification of DNA from recalcitrant plant specimens using a trehalose-based additive. Applications in Plant Sciences 1: 1200236.Google Scholar
Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Bolchacova, E., Voigt, K., Crous, P. W., et al. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 62416246.Google Scholar
Sharpe, D. (2015) Your chi-square test is statistically significant: now what? Practical Assessment, Research and Evaluation 20: 110.Google Scholar
R Development Core Team (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. URL: http://www.R-project.org.Google Scholar
Thell, A., Elix, J. A., Feuerer, T., Hansen, E. S., Kärnefelt, I., Schüler, N. & Westberg, M. (2008) Notes on the systematics, chemistry and distribution of European Parmelia and Punctelia species (lichenized ascomycetes). Sauteria 15: 545559.Google Scholar
Thell, A., Tsurykau, A., Persson, P.-E., Hansson, M., Åsegård, E., Kärnefelt, I. & Seaward, M. R. D. (2017) Parmelia ernstiae, P. serrana and P. submontana, three species increasing in the Nordic countries. Graphis Scripta 29: 2432.Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315-322. New York: Academic Press.Google Scholar
Zuur, A., Ieno, E. N. & Smith, G. M. (2007) Analyzing Ecological Data. New York: Springer-Verlag.Google Scholar
Supplementary material: File

Corsie Supplementary Material

Supplementary Materials

Download Corsie Supplementary Material(File)
File 8.6 MB