Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T13:35:35.990Z Has data issue: false hasContentIssue false

New species of Arthoniales from Cape Verde with an enlarged concept of the genus Ingaderia

Published online by Cambridge University Press:  15 March 2023

Damien Ertz*
Affiliation:
Meise Botanic Garden, Department Research, Nieuwelaan 38, BE-1860 Meise, Belgium Fédération Wallonie-Bruxelles, Service Général de l'Enseignement Supérieur et de la Recherche Scientifique, Rue A. Lavallée 1, B-1080 Bruxelles, Belgium
Anders Tehler
Affiliation:
Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, S-104 05 Stockholm, Sweden
*
Author for correspondence: Damien Ertz. E-mail: [email protected]

Abstract

Three new species of Arthoniales are described from Cape Verde: Ingaderia dendritica, with ascomata formed of richly branched-dendroid lirellae and containing erythrin; Sparria caboverdensis, with small stroma-like ascomata and ascospores with 3–7 transverse septa; and Syncesia miesii, with an I− thallus, a tomentose hymenial disc, and a chemistry with fatty acids only. Phylogenetic analyses using nuLSU and RPB2 sequences reveal the placement of Fulvophyton sorediatum, Llimonaea occulta, L. sorediata and Sparria caboverdensis in the family Opegraphaceae. The genus Llimonaea is recovered as paraphyletic, with L. flexuosa being placed as sister species to a lineage including the genera Ingaderia and Paraingaderia. In consequence, an enlarged concept of the genus Ingaderia is proposed, resulting in the transfer of F. sorediatum, L. flexuosa, L. occulta, L. sorediata and Paraingaderia placodioidea to Ingaderia.

Type
Standard Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of the British Lichen Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aptroot, A and Schumm, F (2011) Fruticose Roccellaceae: an Anatomical-Microscopical Atlas and Guide with a Worldwide Key and Further Notes on Some Crustose Roccellaceae or Similar Lichens. Norderstedt: BoD–Books on Demand.Google Scholar
Arup, U and van den Boom, PPG (2011) Three new dark-fruited Caloplaca species from Cape Verde. Bibliotheca Lichenologica 106, 16.Google Scholar
Büdel, B and Mies, B (1993) Notes on Cape Verde Islands lichen flora, II. Heppiaceae and Peltulaceae (lichenized Ascomycotina). Nova Hedwigia 56, 505514.Google Scholar
Cannon, P, Coppins, B, Ertz, D, Fletcher, A, Pentecost, A and Simkin, J (2021) Arthoniales: Opegraphaceae, including the genera Llimonaea, Opegrapha, Paralecanographa and Sparria. Revisions of British and Irish Lichens 13, 119.Google Scholar
Darbishire, OV (1897) Über die Flechtentribus der Roccellei. Berichte der Deutschen Botanischen Gesellschaft 15, 210 (+Taf. I).Google Scholar
Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.CrossRefGoogle ScholarPubMed
Diederich, P and Ertz, D (2020) First checklist of lichens and lichenicolous fungi from Mauritius, with phylogenetic analyses and descriptions of new taxa. Plant and Fungal Systematics 65, 1375.CrossRefGoogle Scholar
Doyle, JJ and Doyle, JL (1990) Isolation of plant DNA from fresh tissue. Focus 12, 1315.Google Scholar
Egea, JM and Torrente, P (1995) The lichen genus Sclerophyton in the Sonoran Desert. Bryologist 98, 207217.CrossRefGoogle Scholar
Egea, JM, Torrente, P and Mies, B (1995) Llimonaea flexuosa, a new species from Cabo Verde (Opegraphales, lichenized Ascomycotina). Mycotaxon 53, 6367.Google Scholar
Elix, JA and van den Boom, PPG (2022) Three new species of buellioid lichens (Caliciaceae, Ascomycota) from Cape Verde. Australasian Lichenology 90, 1823.Google Scholar
Ertz, D (2020) New insights into the systematics and phylogeny of the genus Fouragea (Arthoniales, Opegraphaceae). Phytotaxa 472, 184192.CrossRefGoogle Scholar
Ertz, D and Tehler, A (2011) The phylogeny of Arthoniales (Pezizomycotina) inferred from nucLSU and RPB2 sequences. Fungal Diversity 49, 4771.CrossRefGoogle Scholar
Ertz, D and van den Boom, PPG (2012) Plectocarpon dirinariae (Arthoniales), a new lichenicolous species from Cape Verde. Lichenologist 44, 591593.CrossRefGoogle Scholar
Ertz, D and van den Boom, PPG (2020) Lecanographa atlantica (Arthoniales, Lecanographaceae), a widespread and conspicuous but still undescribed lichen-forming fungus. Phytotaxa 472, 147158.CrossRefGoogle Scholar
Ertz, D, Miadlikowska, J, Lutzoni, F, Dessein, S, Raspe, O, Vigneron, N, Hofstetter, V and Diederich, P (2009) Towards a new classification of the Arthoniales (Ascomycota) based on a three-gene phylogeny focussing on the genus Opegrapha. Mycological Research 113, 141152.CrossRefGoogle ScholarPubMed
Ertz, D, Tehler, A, Irestedt, M, Frisch, A, Thor, G and van den Boom, P (2015) A large-scale phylogenetic revision of Roccellaceae (Arthoniales) reveals eight new genera. Fungal Diversity 70, 3153.CrossRefGoogle Scholar
Follmann, G and Mies, B (1986) Contributions to the lichen flora and lichen vegetation of the Cape Verde Islands. IV. New lichen records and their chorological significance. Journal of the Hattori Botanical Laboratory 61, 499523.Google Scholar
Frisch, A, Thor, G, Ertz, D and Grube, M (2014) The Arthonialean challenge: restructuring Arthoniaceae. Taxon 63, 727744.CrossRefGoogle Scholar
Fryday, AM and Coppins, BJ (2012) New taxa, reports, and names of lichenized and lichenicolous fungi, mainly from the Scottish Highlands. Lichenologist 44, 723737.CrossRefGoogle Scholar
Giralt, M and van den Boom, PPG (2008) New Rinodina species from the Cape Verde Islands, with notes on some additional species. Lichenologist 40, 523533.CrossRefGoogle Scholar
Hawksworth, DL (2006) Misunderstanding the status of Ciferri & Tomaselli's generic names necessitates Peterjamesia gen. nov. for Sclerophyton circumscriptum and an additional species. Lichenologist 38, 187190.CrossRefGoogle Scholar
Huelsenbeck, JP and Ronquist, F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.CrossRefGoogle ScholarPubMed
Katoh, K and Standley, DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772780.CrossRefGoogle ScholarPubMed
Knoph, J-G and Mies, B (1995) Beiträge zur Flechtenflora der Kapverdischen Inseln III. Die saxicolen Arten der Gattung Lecidella. Bibliotheca Lichenologica 57, 297305.Google Scholar
Liu, YJ, Whelen, S and Hall, BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16, 17991808.CrossRefGoogle Scholar
Llop, E and van den Boom, P (2009) Notes on the lichen genus Bacidia s.l. (lichenized Ascomycota) in the Cape Verde Islands and new lichen records for the archipelago. Mycotaxon 109, 171179.Google Scholar
Lücking, R, Archer, AW and Aptroot, A (2009) A world-wide key to the genus Graphis (Ostropales: Graphidaceae). Lichenologist 41, 363452.CrossRefGoogle Scholar
Maddison, WP and Maddison, DR (2015) Mesquite: a modular system for evolutionary analysis, version 3.04. [WWW resource] URL http://mesquiteproject.org.Google Scholar
Mason-Gamer, RJ and Kellogg, EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45, 524545.CrossRefGoogle Scholar
Miadlikowska, J, McCune, B and Lutzoni, F (2002) Pseudocyphellaria perpetua, a new lichen from western North America. Bryologist 105, 110.CrossRefGoogle Scholar
Mies, B (1989) Vorarbeiten zu einer Flechtenflora der Kapverdischen Inseln. Ph.D. thesis, University of Köln.Google Scholar
Mies, B (1993) Critical checklist of lichens and allied fungi of the Cape Verde Islands (lichenized Ascomycotina). Courier Forschungsinstitut Senckenberg 159, 153174.Google Scholar
Miller, MA, Pfeiffer, W and Schwartz, T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp. 18.Google Scholar
Orange, A, James, PW and White, FJ (2010) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Perlmutter, GB, Rivas Plata, E, LaGreca, S, Aptroot, A, Lücking, R, Tehler, A and Ertz, D (2020) Biatora akompsa is revealed as a disjunct North American species of Pentagenella (Opegraphaceae) through molecular phylogenetic analysis and phenotype-based binning. Bryologist 123, 502516.CrossRefGoogle Scholar
Rambaut, A (2012) FigTree v.1.4.2. [WWW resource] URL http://tree.bio.ed.ac.uk/software/figtree/Google Scholar
Rambaut, A, Drummond, AJ, Xie, D, Baele, G and Suchard, MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901904.CrossRefGoogle ScholarPubMed
Reeb, V, Lutzoni, F and Roux, C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution 32, 10361060.CrossRefGoogle ScholarPubMed
Ronquist, F and Huelsenbeck, JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Sparrius, LB, James, PW and Allen, MA (2005) The sorediate variety of Sclerophytomyces circumscriptus. Lichenologist 37, 285289.CrossRefGoogle Scholar
Stamatakis, A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 13121313.CrossRefGoogle ScholarPubMed
Tavares, CN (1964) Contributions to the lichen flora of Macaronesia. III. New or interesting taxa. Revista de Biologia (Lisboa) 4, 131144.Google Scholar
Tehler, A (1990) A new approach to the phylogeny of Euascomycetes with a cladistic outline of Arthoniales focussing on Roccellaceae. Canadian Journal of Botany 68, 24582492.CrossRefGoogle Scholar
Tehler, A (1997) Syncesia (Arthoniales, Euascomycetidae). Flora Neotropica 74, 148.Google Scholar
Tehler, A (2017) Three new combinations in the genus Fulvophyton (Roccellographaceae, Arthoniales). Lichenologist 49, 171173.CrossRefGoogle Scholar
Tehler, A and Irestedt, M (2007) Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota). Cladistics 23, 432454.CrossRefGoogle Scholar
Tehler, A, Dahlkild, A, Eldenäs, P and Feige, GB (2004) The phylogeny and taxonomy of Macaronesian, European and Mediterranean Roccella (Roccellaceae, Arthoniales). Symbolae Botanicae Upsalienses 34, 405428.Google Scholar
Tehler, A, Ertz, D and Irestedt, M (2013) The genus Dirina (Roccellaceae, Arthoniales) revisited. Lichenologist 45, 427476.CrossRefGoogle Scholar
Torrente, P and Egea, JM (1991) Llimonaea, a new genus of lichenized fungi in the order Opegraphales (Ascomycotina). Nova Hedwigia 52, 239245.Google Scholar
van den Boom, PPG (2012) Additions and notes to the checklist of lichens and lichenicolous fungi of Cape Verde. Österreichische Zeitschrift für Pilzkunde 21, 516.Google Scholar
van den Boom, P and Ertz, D (2012) Lichens and lichenicolous fungi from El Hierro (Canary Islands), a survey, including five new species. Cryptogamie Mycologie 33, 5997.CrossRefGoogle Scholar
van den Boom, PPG and Giralt, M (2012) Checklist and three new species of lichens and lichenicolous fungi of the Algarve (Portugal). Sydowia 64, 149207.Google Scholar
Vilgalys, R and Hester, M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172, 42384246.CrossRefGoogle ScholarPubMed
Zhurbenko, MP, Diederich, P and Gagarina, LV (2020) Lichenicolous fungi from Vietnam, with the description of four new species. Herzogia 33, 525543.Google Scholar