Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T13:55:13.394Z Has data issue: false hasContentIssue false

Molecular data show that Bryoria fremontii and B. tortuosa (Parmeliaceae) are conspecific

Published online by Cambridge University Press:  26 May 2009

Saara VELMALA
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014University of Helsinki, Finland. Email: [email protected]
Leena MYLLYS
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014University of Helsinki, Finland. Email: [email protected]
Pekka HALONEN
Affiliation:
Botanical Museum, Department of Biology, P.O. Box 3000, FI-90014University of Oulu, Finland.
Trevor GOWARD
Affiliation:
Herbarium, Department of Botany, University of British Columbia, Vancouver, BC V6G 2B1, Canada.
Teuvo AHTI
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014University of Helsinki, Finland. Email: [email protected]

Abstract

Bryoria fremontii and B. tortuosa are the only species in the lichenized ascomycete genus Bryoria known to contain the pulvinic acid derivative vulpinic acid. In B. fremontii this yellow pigment is restricted to the soralia and apothecia, while in B. tortuosa it can occur throughout the thallus. The actual amount of vulpinic acid produced by B. tortuosa is rather variable, however, with intermediate specimens bearing both white and yellow pseudocyphellae. We studied the relationship between the two species with parsimony analysis using four DNA regions: 1) the internal transcribed spacers of the nuclear rDNA including the 5.8S region (ITS), 2) partial sequences from the intergenic spacer of the nuclear rDNA (IGS), 3) partial sequences from the small subunit of the mitochondrial rDNA (mtSSU), and 4) partial sequences from the protein-coding glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). Our phylogenetic analysis revealed that B. fremontii and B. tortuosa must be regarded as conspecific, but allowing for some genetic differentiation between European and North American populations. Bryoria tortuosa is therefore synonymized with B. fremontii.

Type
Research Article
Copyright
Copyright © British Lichen Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlner, S. (1948) Utbredningstyper bland nordiska barrträdslavar. Acta Phytogeographica Suecica 22: 1257.Google Scholar
Argüello, A., Del Prado, R., Cubas, P. & Crespo, A. (2007) Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biological Journal of the Linnean Society 91: 455467.CrossRefGoogle Scholar
Brodo, I. M. & Hawksworth, D. L. (1977) Alectoria and allied genera in North America. Opera Botanica 42: 1164.Google Scholar
Brodo, I. M., Sharnoff, D. & Sharnoff, S. (2001) Lichens of North America. New Haven & London: Yale University Press.Google Scholar
Byazrov, L. G., Ganbold, E., Gubanov, I. A. & Ul'ziykhutag, N. (1989) [Flora of Khangay. Biological Resources and Natural Conditions of Mongolian People's Republic] 33: 1191. [In Russian].Google Scholar
Chkobadze, A. B. (2004) Bryoria fremontii. In [Red Data Book of the Vologda Region (Konechnaya, G. Y. & Suslova, T. A., eds)] 2: 292. Vologda: Rus'. [In Russian].Google Scholar
Crawford, S. (2007) Ethnolichenology of Bryoria fremontii: wisdom of elders, population ecology, and nutritional chemistry. M. Sc. thesis, University of Victoria, Canada.Google Scholar
Culberson, C. F. (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography 72: 113125.CrossRefGoogle Scholar
Cunningham, C. W. (1997) Is congruence between data partitions a reliable predictor of phylogenetic accuracy? Empirically testing an iterative procedure for choosing among phylogenetic methods. Systematic Biology 46: 464478.CrossRefGoogle ScholarPubMed
Derr, C., Helliwell, R., Ruchty, A., Hoover, L., Geiser, L., Lebo, D. & Davis, J. (2003) Survey Protocols for Survey and Manage Category A and C Lichens in the Northwest Forest Plan Area. Bureau of Land Management U.S. Forest Service, U.S. Fish & Wildlife Service.Google Scholar
Fadeeva, M. A. & Kravchenko, A. V. (2007) Bryoria fremontii. In [Red Data Book of Republic of Karelia (Ivanter, E. V. & Kuznetsov, O. L., eds)]: 108109. Petrozavodsk: Kareliya. [In Russian].Google Scholar
Fadeeva, M. A., Golubkova, N. S., Vitikainen, O. & Ahti, T. (2008) Conspectus of Lichens and Lichenicolous Fungi of the Republic of Karelia. Petrozavodsk: Karelian Research Centre.Google Scholar
Fink, B. (1935) The Lichen Flora of the United States. Completed for publication by Joyce Hedrick. Ann Arbor: University of Michigan Press.CrossRefGoogle Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Gargas, A. & Taylor, J. W. (1992) Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18S rDNA from lichenized fungi. Mycologia 84: 589592.CrossRefGoogle Scholar
Gjerlaug, H. C. (1987) Bidrag til kunnskapen om makrolavfloraen i Hedmark fylke, Sør-Norge. Blyttia 45: 6973.Google Scholar
Golojuch, S. T. & Lawrey, J. D. (1988) Quantitative variation in vulpinic and pinastric acids produced by Tuckermannopsis pinastri (lichen-forming Ascomycotina, Parmeliaceae). American Journal of Botany 75: 18711875.CrossRefGoogle Scholar
Goward, T. (1999) The Lichens of British Columbia. Illustrated keys. Part 2, Fruticose Species. Victoria: British Columbia Ministry of Forests.Google Scholar
Goward, T. & Ahti, T. (1992) Macrolichens and their zonal distribution in Wells Gray Provincial Park and its vicinity, British Columbia, Canada. Acta Botanica Fennica 147: 160.Google Scholar
Grant, T. & Kluge, A. (2003) Data exploration in phylogenetic inference: scientific, heuristic, or neither. Cladistics 19: 379418.CrossRefGoogle ScholarPubMed
Gyelnik, V. (1934) Lichenes Sipeani ex Oregon. Annales Historico-Naturales Musei Nationalis Hungarici 28: 278284.Google Scholar
Gyelnik, V. (1935) Conspectus Bryopogonum. Feddes Repertorium 38: 219255.CrossRefGoogle Scholar
Hale, M. E. (1979) How to Know the Lichens. 2nd Edition. Dubuque, Iowa: W. C. Brown Company Publishers.Google Scholar
Hawksworth, D. L. (1982) Alectoria and Bryoria species in the Canary Islands. Lichenologist 14: 7576.CrossRefGoogle Scholar
Hawksworth, D. L. & Sherwood, M. A. (1981) Proposals for Nomina Conservanda and Rejicienda for Ascomycete names (lichenized and non-lichenized). Taxon 30: 338348.CrossRefGoogle Scholar
Hermansson, J. & Kudryavtseva, D. I. (1997) Macrolichens. In [Flora and Plant Cover of the Pechoro-Ilych Biosphere Reserve (Degteva, S. V., ed)]: 216284. Ekaterinburg: Komi Science Centre. [In Russian].Google Scholar
Hermansson, J. & Thor, G. (2004) Bryoria tortuosa discovered as new to Sweden. Graphis Scripta 15: 3941.Google Scholar
Holien, H. (1986) Bryoria tortuosa new to Northern Europe. Lichenologist 18: 265268.CrossRefGoogle Scholar
Högnabba, F. (2006) Molecular phylogeny of the genus Stereocaulon (Stereocaulaceae, lichenized ascomycetes). Mycological Research 110: 10801092.CrossRefGoogle ScholarPubMed
Kravchenko, A. V. (2003) Records of the protected species Bryoria fremontii (Parmeliaceae, Ascomycotina) in Arkhangelsk and Vologda regions. Botanicheskiy Zhurnal 88(2): 102104.Google Scholar
Kuznetsova, E., Ahti, T. & Himelbrant, D. (2007) Lichens and allied fungi of the Eastern Leningrad Region. Norrlinia 16: 162.Google Scholar
Lindblom, L. & Ekman, S. (2006) Genetic variation and population differentiation in the lichen-forming ascomycete Xanthoria parietina on the island Storfosna, central Norway. Molecular Ecology 15: 15451559.CrossRefGoogle ScholarPubMed
Lindblom, L. & Ekman, S. (2007) New evidence corroborates population differentiation in Xanthoria parietina. Lichenologist 39: 259271.CrossRefGoogle Scholar
Lohtander, K., Myllys, L., Sundin, R., Källersjö, M. & Tehler, A. (1998) The species pair concept in the lichen Dendrographa leucophaea (Arthoniales): analyses based on ITS sequences. Bryologist 101: 404411.CrossRefGoogle Scholar
Lohtander, K., Oksanen, I. & Rikkinen, J. (2002) A phylogenetic study of Nephroma (lichen-forming Ascomycota). Mycological Research 106: 777787.CrossRefGoogle Scholar
Lohtander, K., Ahti, T., Stenroos, S. & Urbanavichus, G. (2008) Is Anaptychia monophyletic? A phylogenetic study based on nuclear and mitochondrial genes. Annales Botanici Fennici 45: 5560.CrossRefGoogle Scholar
Maddison, D. R. & Maddison, W. P. (2005) MacClade 4: Analysis of Phylogeny and Character Evolution. Sunderland, MA, USA: Sinauer Associates.Google Scholar
Mangold, A., Martín, M. P., Lücking, R. & Lumbsch, H. T. (2008) Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota: Ostropales). Taxon 57: 476486.Google Scholar
McCune, B. & Geiser, L. (1997) Macrolichens of the Pacific Northwest. Corvallis: Oregon State University Press.Google Scholar
Merrill, G. K. (1909) Alectoria tortuosa, sp. nov. Bryologist 12: 56.CrossRefGoogle Scholar
Mietzsch, E., Lumbsch, H. T. and Elix, J. A. (1994) Wintabolites (Mactabolites for Windows). Users Manual and Computer Program. Second Edition. Universität Essen, Germany.Google Scholar
Mikulin, A. G. (1990) [Determination book of lichens of Kamchatka Peninsula.]. Vladivostok: Far East Section of Russian Academy of Sciences. [In Russian].Google Scholar
Motyka, J. (1958) Odkrycie Alectoria tortuosa Merrill w Karpatach Wschodnich – Alectoria tortuosa Merrill in Carpatis Orientalibus inventa. Fragmenta Floristica et Geobotanica 3: 201203.Google Scholar
Myllys, L., Lohtander, K., Källersjö, M. & Tehler, A. (1999) Sequence insertions and ITS data provide congruent information on Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Molecular Phylogenetics and Evolution 12: 295309.CrossRefGoogle Scholar
Myllys, L., Stenroos, S. & Thell, A. (2002) New genes for phylogenetic studies of lichenized fungi: glyceraldehyde-3-phosphate dehydrogenase and beta-tubulin genes. Lichenologist 34: 237246.CrossRefGoogle Scholar
Myllys, L., Halonen, P. & Velmala, S. (2006) Notes on some rare species of Bryoria from Finland. Graphis Scripta 18: 2326.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Oxner, A. N. (1993) [Flora of the lichens of Ukraine vol. 2. Kyiv: Naukova Dumka]. [In Ukrainan].Google Scholar
Petrova, O. V. (2000) [The genus Bryoria in Murmansk Region]. Apatity: Kola Science Centre. [In Russian].Google Scholar
Printzen, C. & Ekman, S. (2002) Genetic variability and its geographical distribution in the widely disjunct Cavernularia hultenii. Lichenologist 34: 101111.CrossRefGoogle Scholar
Printzen, C., Ekman, S. & Tønsberg, T. (2003) Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Molecular Ecology 12: 14731486.CrossRefGoogle Scholar
Pystina, T. N. & Hermansson, J. (1998) Bryoria fremontii. In [Red Data Book of Komi Republic (Taskaev, A. I., ed)]: 258259. Moskva & Syktyvkar: DIK Izdatel'stvo. [In Russian].Google Scholar
Sedel'nikova, N. V. (1985) [Lichen flora of Sangilen Highland]. Novosibirsk: Nauka. [In Russian].Google Scholar
Sedel'nikova, N. V. (1990) [Lichens of Altay and Kuznetsk Highland. Conspectus of the flora]. Novosibirsk: Nauka. [In Russian].Google Scholar
Sedel'nikova, N. V. (1998) Bryoria fremontii. In [Red Data Book of Novosibirsk Region (Krasnoborov, I. M.. ed)]: 123. Novosibirsk: Nauka. [In Russian].Google Scholar
Spribille, T. (2002) Additions to the lichen flora of Alberta, Canada from Crowsnest Pass. Evansia 19: 2021.CrossRefGoogle Scholar
Stephenson, N. L. & Rundel, P. W. (1979) Quantitative variation and the ecological role of vulpinic acid and atranorin in the thallus of Letharia vulpina. Biochemical Systematics and Ecology 7: 263267.CrossRefGoogle Scholar
Swofford, D. L. (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4. Sunderland, MA, USA: Sinauer Associates.Google Scholar
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24: 48764882.CrossRefGoogle Scholar
Urbanavichus, G. P. & Urbanavichene, I. N. (2004) [Lichens. In The Present-day State of Biological Diversity within Protected Areas. 3 (Afonina, O. A. & Golubkova, N. S., eds)]: 5232. Moscow: The World Conservation Union, Ministry of Natural Resources of the Russian Federation & Commission on Biodiversity Conservation of the Russian Academy of Sciences. [In Russian].Google Scholar
Urbanavichus, G., Ahti, A. & Urbanavichene, I. (2008) Catalogue of lichens and allied fungi of Murmansk Region, Russia. Norrlinia 17: 180.Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. San Diego: Academic Press.Google Scholar