Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T21:40:37.480Z Has data issue: false hasContentIssue false

The impact of forest management on changes in composition of terricolous lichens in dry acidophilous Scots pine forests

Published online by Cambridge University Press:  07 May 2013

Alica DINGOVÁ KOŠUTHOVÁ
Affiliation:
Institute of Botany/Department of Geobotany, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 23, Slovakia and Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 61137, Czech Republic. Email: [email protected]
Ivana SVITKOVÁ
Affiliation:
Institute of Botany/Department of Geobotany, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 23, Slovakia
Dušan SENKO
Affiliation:
Institute of Botany/Department of Geobotany, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 23, Slovakia
Milan VALACHOVIČ
Affiliation:
Institute of Botany/Department of Geobotany, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 23, Slovakia

Abstract

This study focuses on dry acidophilous Scots pine forests, well known for their high biodiversity of cryptogams. We hypothesized that dense forests and heavy management were responsible for changes in species diversity, decreasing trends in lichen cover and increasing moss cover. This hypothesis was tested in three types of Scots pine forests maintained under three different management regimes: 1) managed forests (forest plantations regenerated by planting), 2) semi-natural forests (forest plantations regenerated naturally), both located in the Borská nížina lowland in SW Slovakia, and 3) natural forests (primordial vegetation without visible management actions from the association Cladonio-Pinetum Juraszek 1928), located in the Bory Tucholskie National Park, NW Poland.

We observed that the cover of the canopy tree layer had the most significant influence on the diversity of lichens. Managed forests are planted and maintained to achieve denser tree stocking, and although the environmental conditions created appear optimal for moss species, they are less suitable for terricolous lichens.

Type
Articles
Copyright
Copyright © British Lichen Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahti, T. (1966) Correlation of the chemical and morphological characters in Cladonia chlorophaea and allied lichens. Annales Botanici Fennici 3: 380390.Google Scholar
Ahti, T. (1980) Nomenclatural notes on Cladonia species. Lichenologist 12: 125133.CrossRefGoogle Scholar
Barkman, J. J., Doing, H. & Segal, S. (1964) Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Botanica Neerlandica 13: 394419.Google Scholar
Bielczyk, U., Lackovičová, A., Farkas, E., Lökös, L., Liška, J., Breuss, O. & Kondratyuk, S. Y. (2004) Checklist of Lichens of the Western Carpathians. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences.Google Scholar
Bouda, F. (2009) Lišejníky reliktních borů. (Lichens of the relict pine forests). M. Sc. thesis, Charles University, Prague.Google Scholar
Braun-Blanquet, J. (1964) Pflanzensoziologie (3ème édition). Wien, New York: Springer-Verlag.CrossRefGoogle Scholar
Brodo, I. M. (1961) A study of lichen ecology in Central Long Island, New York. American Midland Naturalist 65: 290310.Google Scholar
Brulisauer, A. R., Bradfield, G. E. & Maze, J. (1996) Quantifying organizational change after fire in lodgepole pine forest understorey. Canadian Journal of Botany 74: 17731782.Google Scholar
Bruun, H. H., Moen, J., Virtanen, R., Grytnes, J-A., Oksanen, L. & Angerbjörn, A. (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. Journal of Vegetation Science 17: 3746.CrossRefGoogle Scholar
Burgaz, A. R. (2009) El género Cladonia en la península Ibérica. Supergrupo Cocciferae . Botanica Complutensis 33: 928.Google Scholar
Canters, K. J., Schöller, H., Ott, S. & Jahns, H. M. (1991) Microclimatic influences on lichen distribution and community development. Lichenologist 23: 237252.Google Scholar
Celiński, F., Wika, S. & Parusel, J. B. (1997) Czerwona lista zbiorowisk roślinnych Górnego Śląska. Raporty, Opinie 2: 3868.Google Scholar
Coxson, D. S. & Marsh, J. (2001) Lichen chronosequences (postfire and postharvest) in lodgepole pine (Pinus contorta) forests of northern interior British Columbia. Canadian Journal of Botany 79: 14491464.CrossRefGoogle Scholar
Crittenden, P. D. (1991) Ecological significance of necromass production in mat-forming lichens. Lichenologist 23: 323331.CrossRefGoogle Scholar
Crittenden, P. D. (2000) Aspects of the ecology of mat-forming lichens. Rangifer 20: 127139.Google Scholar
Danielewicz, W. & Pawlaczyk, P. (2004) Śródlądowy bór chrobotkowy. In Poradniki Ochrony Siedlisk i Gatunków Natura 2000 – Podręcznik Metodyczny. Tom 5. Lasy i bory. (Herbich, W., ed.): 289296. Warszawa: Ministerstwo Środowiska.Google Scholar
Daniëls, F. J. A. (1993) Succession in lichen vegetation on Scots pine stumps. Phytocoenologia 23: 619623.CrossRefGoogle Scholar
Dynesius, M. & Zinko, U. (2006) Species richness correlations among primary producers in boreal forests. Diversity and Distributions 12: 703713.Google Scholar
Ellenberg, H. (1988) Vegetation Ecology of Central Europe. Cambridge: Cambridge University Press.Google Scholar
Ellis, C. J., Crittenden, P. D., Scrimgeour, C. M. & Ashcroft, C. (2003) The natural abundance of 15N in mat-forming lichens. Oecologia 136: 115123.CrossRefGoogle ScholarPubMed
Emmer, I. M. & Sevink, J. (1994) Temporal and vertical changes in the humus form profile during a primary succession of Pinus sylvestris . Plant and Soil 167: 281295.Google Scholar
Ermakov, N. & Morozova, O. (2011) Syntaxonomical survey of boreal oligotrophic pine forests in northern Europe and Western Siberia. Applied Vegetation Science 14: 524536.CrossRefGoogle Scholar
Esseen, P-A., Renhorn, K-E. & Pettersson, R. B. (1996) Epiphytic lichen biomass in managed and old-growth boreal forests: effect of branch quality. Ecological Applications 6: 228238.CrossRefGoogle Scholar
Fałtynowicz, W. (1983) Zmiany biomasy runa Boru Chrobotkowego (Cladonio-Pinetum Juraszek 1928) pod wpływem nawożenia mineralnego doniesielnie naukowe – Changes in the ground cover biomass of a Cladonia-pine forest (Cladonio-Pinetum Juraszek 1928) after mineral fertilization (Research contribution). Zeszyty naukowe wydziału biologii i nauk o ziemi uniwersytetu gdańskiego. Biologia 4: 109121.Google Scholar
Fałtynowicz, W. (1986) The dynamics and role of lichens in a managed Cladonia-Scotch pine forest (Cladonio-Pinetum). Monographiae Botaniceae 69: 596.Google Scholar
Ferry, B. W. & Pickering, M. (1989) Studies on the Cladonia chlorophaea complex at Dungeness, England. Lichenologist 21: 6777.CrossRefGoogle Scholar
FMP (Forest Management Plans) (2005) Department of Forest Management. Military Forests and Estates of the Slovak Republic, state enterprise. Malacky: Branch plant Malacky Press.Google Scholar
Fontaine, K. M., Ahti, T. & Piercey-Normore, M. D. (2010) Convergent evolution in Cladonia gracilis and allies. Lichenologist 42: 323338.Google Scholar
Freitag, S., Hogan, E. J., Crittenden, P. D., Allison, G. G. & Thain, S. C. (2011) Alterations in the metabolic fingerprint of Cladonia portentosa in response to atmospheric nitrogen deposition. Physiologia Plantarum 143: 107114.CrossRefGoogle ScholarPubMed
Futák, J. (1980) Fytogeografické členenie 1: 1 000 000. In Rastlinstvo, živočístvo a fenológia: Atlas SSR VII (Plesník, P., ed.): 88. Bratislava: Vydavatel'stvo Slovenskej Akadémě Vied.Google Scholar
Glenn, M. G., Cole, M. S., Webb, S. L. & Hale, C. M. (1998) Corticolous lichens and bryophytes: preliminary surveys of old growth and managed northern hardwood stands in Minnesota. In Lichenographia Thomsoniana (Glenn, M. G., Harris, R. C., Ring, R. & Cole, M. S., eds.): 407421. Ithaca, New York: Mycotaxon Ltd. Google Scholar
Haapasaari, M. (1988) The oligotrophic heath vegetation of northern Fennoscandia and its zonation. Acta Botanica Fennica 135: 1219.Google Scholar
Hammer, S. (1995) The Biogeography and Ecology of Species in the Lichen Genus Cladonia in the Columbia River Basin . Boston: Boston University Press.Google Scholar
Hasse, T. & Daniëls, F. J. A. (2006) Species responses to experimentally induced habitat changes in a Corynephorus grassland. Journal of Vegetation Science 17: 135146.CrossRefGoogle Scholar
Hauck, M. & Wirth, V. (2010) Preference of lichens for shady habitats is correlated with intolerance to high nitrogen levels. Lichenologist 42: 475484.Google Scholar
Hegedüšová, K., Škodová, I. & Mikuška, B. (2004) Boriny a travobilinné porasty Borskej nížiny – Pine forests and grassland vegetation of the Borska nížina lowland. Bulletin Slovenskej Botanickej Spolocnosti 10: 5156.Google Scholar
Heinken, T. (2007) Sand- und Silikat-Kiefernwälder (Dicrano-Pinion) in Deutschland – Gliederungskonzept und Ökologie. Potsdam: University of Potsdam Press.Google Scholar
Heinken, T. & Zippel, E. (1999) Die Sand-Kiefernwälder (Dicrano-Pinion) im norddeutschen Tiefland: syntaxonomische, standörtliche und geographische Gliederung. Tuexenia 19: 55106.Google Scholar
Hennekens, S. M. & Schaminée, J. H. J. (2001) TURBOVEG, a comprehensive data base management system for vegetation data. Journal of Vegetation Science 12: 589591.Google Scholar
Hennipman, E., Sipman, H. J. M. & Vijsma, E. (1978) De Nederlandse Cladonia's (Lichenes). Zeist: KNNV.Google Scholar
Hobbs, R. J. (1985) The persistence of Cladonia patches in closed heathland stands. Lichenologist 17: 103109.Google Scholar
Hogan, E. J., Minnullina, G., Sheppard, L. J., Leith, I. D. & Crittenden, P. D. (2010) Response of phosphomonoesterase activity in the lichen Cladonia portentosa to nitrogen and phosporus enrichment in a field manipulation experiment. New Phytologist 186: 926933.CrossRefGoogle Scholar
Husová, M. & Andresová, J. (1992) Das Cladonio rangiferinae-Pinetum sylvestris des Landschaftsschutzgebietes Křivoklátsko (Mittelböhmen) und seine Stellung im phytozönologischen System. Folia Geobotanica et Phytotaxonomica 27: 357386.Google Scholar
Hyvärinen, M. & Crittenden, P. D. (1998) Relationships between atmospheric nitrogen inputs and the vertical nitrogen and phosphorus concentration gradients in the lichen Cladonia portentosa . New Phytologist 140: 519530.CrossRefGoogle ScholarPubMed
Juraszek, H. (1928) Pflanzensoziologische Studien über die Dunen bei Warschau. Warszawa: Uniwersytet Warszawski. Bulletin de l'Académie polonaise des sciences et des lettres, Classe des sciences mathématiques et naturelles, Série B 1927: 565–610.Google Scholar
Kabucis, I., Bambe, B., Eņğele, L., Laime, B., Pakalme, M., Smaļinskis, J. & Urtáns, A. (2000) Biotopu rokasgrámata. Eiropas Savieníbas aizsargájamie biotope Latvijá. Riga: Latvijas Dabas Fonds Press.Google Scholar
Kalivodová, E., Bedrna, Z., Bulánková, E., David, S., Ďugová, O., Fedor, P., Fenďa, P., Gajdoš, P., Gavlas, V., Kalivoda, H., et al. (2008) Flóra a Fauna Viatych Pieskov Slovenska. Bratislava: VEDA Press.Google Scholar
Kelly, D. L. & Connolly, A. (2000) A review of the plant communities associated with Scots pine (Pinus sylvestris L.) in Europe, and evaluation of putative indicator/specialist species. Investigación Agraria, Sistemas y Recursos Forestales 1: 1539.Google Scholar
Kolbek, J. & Chytrý, M. (2010) L8 Suché Bory – dry pine forests. In Katalog Biotopů České Republiky. Ed. 2 (Chytrý, M., Kučera, T., Kočí, M., Grulich, V. & Lustyk, P., eds.): 331334. Praha: Agentura ochrany přírody a krajiny ČR Press.Google Scholar
Kollár, J., Balkovič, J., Mazúrová, A. & Šimonovič, V. (2011) Phytocoenological and production evaluation of the natural oak and secondary pine forests of the Borská nížina lowland. Ekológia 30: 369380.CrossRefGoogle Scholar
Kösta, H. & Tilk, M. (2008) Variability of bryophytes and lichens on a forested coastal dune Tõotusemägi in Southwestern Estonia. Forestry Studies/Metsanduslikud Uurimused 49: 7180.CrossRefGoogle Scholar
Kotelko, R. & Piercey-Normore, M. D. (2010) Cladonia pyxidata and C. pocillum; genetic evidence to regard them as conspecific. Mycologia 102: 534545.Google Scholar
Krippel, E. (1965) Posglaciálny vývoj lesov na Záhorskej nížine. Biologické Práce 11(3): 599.Google Scholar
Krippelová, T. & Krippel, E. (1956) Vegetačné Pomery Záhoria. I. Viate Piesky. Bratislava: VEGA Press.Google Scholar
Kučera, T., Peksa, O. & Košnar, J. (2006) K problematice původu acidofilních borů na Třeboňsku – About the origin of acidophilous Scots Pine forests in the Třeboňsko Basin (South Bohemia). In Biotopy a Jejich Vegetační Interpretace v ČR (Kučera, T. & Navrátilová, J., eds): 91106. Praha: Česká Botanická Společnost.Google Scholar
Lesica, P., McCune, B., Cooper, S V. & Hong, W. S. (1991) Differences in lichen and bryophyte communities between old-growth and managed second growth forests in Swan Valley, Montana. Canadian Journal of Botany 69: 17451755.CrossRefGoogle Scholar
Lipnicki, L. (2003) Porosty Borów Tucholskich: Przewodnik do oznaczania gatunków listkowatych i krzaczkowatych. Charzykowy: Park Narodowy ‘Bory Tucholskie’.Google Scholar
Magnusson, M. (1982) Composition and succession of lichen communities in an inner coastal dune area in southern Sweden. Lichenologist 14: 153163.CrossRefGoogle Scholar
Magnusson, M. (1983) Composition and succession of bryophytes and lichens in an outer coastal dune area in Southern Sweden. Cryptogamie, Bryologie Lichénologie 4: 335355.Google Scholar
Marhold, K. & Hindák, F. (1998) Checklist of Non-vascular and Vascular Plants of Slovakia. Bratislava: VEDA Press.Google Scholar
Matuszkiewicz, W. & Matuszkiewicz, J. M. (1973) Przegląd fitosocjologicyny zbiorowsk leśnych Polski. Cz. 2. Bory sosnowe. Phytocoenosis 2(4): 273356.Google Scholar
Matuszkiewicz, W. & Matuszkiewicz, J. M. (1996) Przegląd fitosocjologiczny zbiorowisk leśnych Polski (Synteza). Phytocoenosis 8: 179.Google Scholar
Meier, E., Paal, J., Liira, J. & Jüriado, I. (2005) Influence of tree stand age and management on the species diversity in Estonian eutrophic alvar and boreo-nemoral Pinus sylvestris forests. Scandinavian Journal of Forest Research 20: 135144.CrossRefGoogle Scholar
Mikuška, B. (2005) Syntaxonómia dubovo-borovicových kultúrnych lesov na Borskej nížine – Syntaxonomy of the cultural oak-pine forests in the Borská nížina Lowland. Bulletin Slovenskej Botanickej Spolocnosti 27: 157169.Google Scholar
Nieppola, J. (1992) Long-term vegetation changes in stands of Pinus sylvestris in southern Finland. Journal of Vegetation Science 3: 475484.Google Scholar
Oksanen, J. (1986) Succession, dominance and diversity in lichen-rich pine forest vegetation in Finland. Holarctic Ecology 9: 261266.Google Scholar
Olech, M. (1998) Apophytes in the lichen flora of Poland. Phytocoenosis 10: 251255.Google Scholar
Olofsson, J., Moen, J. & Østlund, L. (2010) Effects of reindeer on boreal forest floor vegetation: does grazing cause vegetation state transitions. Basic and Applied Ecology 11: 550557.CrossRefGoogle Scholar
Osyczka, P. (2011) The genus Cladonia, group Cocciferae, in Poland. Herzogia 24: 209227.Google Scholar
Peterken, G. F. (1999) Applying natural forestry concepts in an intensively managed landscape. Global Ecology Biogeography 8: 321328.Google Scholar
Piercey-Normore, M. D., Hausner, G. & Gibb, E. A. (2004) Group I intron-like insertions in SSU rDNA of Cladonia gracilis and C. rangiferina . Lichenologist 36: 365380.Google Scholar
Pino-Bodas, R., Burgaz, A. R., Martín, M. P. & Lumbsch, H. T. (2012) Species delimitations in the Cladonia cariosa group (Cladoniaceae, Ascomycota). Lichenologist 44: 121135.Google Scholar
Prieditis, N. (2002) Evaluation frameworks and conservation system of Latvian forests. Biodiversity and Conservation 11: 13611375.Google Scholar
Ptačovský, K. (1959) Poznámky ke květeně bratislavského okolí. Biologické Práce Slovenskej Akadémie Vied 5: 88.Google Scholar
Ružička, M. (1953) Poznámky k histórii a terajšiemu stavu borovicových lesov na Záhorskej nížine. Biologia 9: 210218.Google Scholar
Ružička, M. (1960 a) Geobotanické pomery lesov v oblasti pieskov na Záhorskej nížine. Ph.D theis, Slovak Academy of Science, Bratislava.Google Scholar
Ružička, M. (1960 b) Pôdne ekologické pomery lesných spoločenstiev v oblasti viatych pieskov na Záhorskej nížine. Biologické Práce Slovenskej Akadémie Vied 6: 788.Google Scholar
Ružička, M. (1960 c) Prehľad rastlinných spoločenstiev na Záhorskej nížine. Biologia 15: 653662.Google Scholar
Sedia, E. G. & Ehrenfeld, J. G. (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100: 447458.Google Scholar
Söderström, L. (1988) The occurrence of epixylic bryophyte and lichen species in an old natural and managed forest stand in northeast Sweden. Biological Conservation 45: 169178.Google Scholar
Sokołowski, A. W. (1965) Zespoły leśne nadleśnictwa Laska w Borach Tucholskich – forest associations of Laska Forestry District in Bory Tucholskie (Tuchola Forest). Fragmenta Floristica et Geobotanica 11: 97119.Google Scholar
Solon, J. (2003) Scots pine forests of the Vaccinio-piceetea class in Europe: forest sites studied. Polish Journal of Ecology 51: 421439.Google Scholar
Stefañska-Krzaczek, E. (2010) Plant communities of Scots pine stands in the south-eastern part of the Bory Dolnośląskie forest (SW Poland). Acta Botanica Silesiaca Monographiae 6: 398.Google Scholar
Steinová, J. (2009) Revize skupiny Cladonia coccifera ve střední Evropě s důrazem na území ČR . M. Sc. thesis, Charles University, Prague.Google Scholar
Stenroos, S. K. & DePriest, P. T. (1998) SSU RDNA phylogeny of Cladoniiform lichens. American Journal of Botany 85: 15481559.Google Scholar
Sulyma, R. & Coxson, D. S. (2001) Microsite displacement of terrestrial lichens by feather moss mats in late seral pine-lichen woodlands of North-central British Columbia. Bryologist 104: 505516.Google Scholar
Szczygielski, M. (2007) Zmiany charakterystyki fitosocjologicznej borów świeżych Peucedano-Pinetum w Puszczach: Piskiej i Augustowskiej na przestrzeni 50 lat. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej 9: 153167.Google Scholar
Šomšák, L., Šimonovič, V. & Kollár, J. (2004) Phytocoenoses of pine forests in the central part of Záhorská nížina Lowland. Biologia 59: 101115.Google Scholar
Šomšáková, V. (1988) Viazanosť machov na borovicové porasty viatych pieskov Záhorskej nížiny. Acta Facultatis Rerum Naturalium Universitatis Comenianae, Botanica 36: 2758.Google Scholar
ter Braak, C. J. F. & Šmilauer, P. (2002) CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination. Ithaca, New York: Microcomputer Power Press.Google Scholar
Tichý, L. (2002) JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451453.Google Scholar
Tømmervik, H., Høgda, K. A. & Solheim, I. (2003) Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multi-temporal Landsat MSS/TM data. Remote Sensing of Environment 85: 370388.Google Scholar
Uotila, A., Hotanen, J.-P. & Kouki, J. (2005) Succession of understorey vegetation in managed and seminatural Scots pine forests in eastern Finland and Russian Karelia. Canadian Journal of Forest Research 35: 14221441.Google Scholar
Valachovič, M. (2005) Lesné biotopy Borskej nížiny. Záhorie 3: 3238.Google Scholar
van Tol, G., Dobben, H. F., Schmidt, P. & Klap, J. M. (1998) Biodiversity of Dutch forest ecosystems as affected by receding groundwater levels and atmospheric deposition. Biodiversity and Conservation 7: 221228.Google Scholar
Väre, H., Ohtonen, R. & Oksanen, J. (1995) Effects of reindeer grazing on understorey vegetation in dry Pinus sylvestris forests. Journal of Vegetation Science 6: 523530.Google Scholar
Westhoff, V. & van der Maarel, E. (1978) The Braun-Blanquet approach. In Classification of Plant Communities (Whittaker, R. H., ed.): 287399. The Hague: Dr W. Junk Publishers.Google Scholar
Woś, A. (1999) Klimat Polski. Warszawa: Wydawnictwo Naukowe PWN Press.Google Scholar
Zobel, K., Zobel, M. & Peet, R. K. (1993) Change in pattern diversity during secondary succession in Estonian forests. Journal of Vegetation Science 4: 489498.Google Scholar