Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T21:10:45.090Z Has data issue: false hasContentIssue false

High fungal selectivity for algal symbionts in the genus Bryoria

Published online by Cambridge University Press:  07 August 2014

Hanna LINDGREN
Affiliation:
Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014University of Helsinki, Finland. Email: [email protected]
Saara VELMALA
Affiliation:
Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014University of Helsinki, Finland. Email: [email protected]
Filip HÖGNABBA
Affiliation:
Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014University of Helsinki, Finland. Email: [email protected]
Trevor GOWARD
Affiliation:
UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Håkon HOLIEN
Affiliation:
Nord-Trøndelag University College, Serviceboks 2501, N-7729 Steinkjer, Norway
Leena MYLLYS
Affiliation:
Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014University of Helsinki, Finland. Email: [email protected]

Abstract

In this study we examined photobiont identity, diversity and selectivity in the genus Bryoria. We focused on B. fremontii and section Implexae in order to determine whether secondary chemistry is correlated with photobiont identity. DNA from two loci for photobionts and three loci for mycobionts was sequenced for both parsimony and Bayesian phylogenetic analyses. A comparison of photobiont and mycobiont phylogenies reveals that most Bryoria species associate exclusively with lineages of the Trebouxia simplex group; only B. smithii was associated with a different photobiont. We conclude that most Bryoria species included in our study are highly selective in their choice of algal partners and that the presence/concentration of different secondary compounds does not correlate with photobiont identity either in section Implexae or in B. fremontii.

Type
Articles
Copyright
Copyright © British Lichen Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadjian, V. (1993) The Lichen Symbiosis. New York: John Wiley & Sons, Inc.Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215: 403410.CrossRefGoogle ScholarPubMed
Beck, A., Friedl, T. & Rambold, G. (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytologist 139: 709720.CrossRefGoogle Scholar
Beck, A., Kasalicky, T. & Rambold, G. (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida . New Phytologist 153: 317326.CrossRefGoogle Scholar
Blaha, J., Baloch, E. & Grube, M. (2006) High photobiont diversity associated with the euryecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biological Journal of the Linnean Society 88: 283293.CrossRefGoogle Scholar
Brodo, I. M. & Hawksworth, D. L. (1977) Alectoria and allied genera in North America. Opera Botanica 42: 1164.Google Scholar
Casano, L. M., del Campo, E. M., García-Breijo, F. J., Reig-Armiñana, J., Gasulla, F., del Hoyo, A., Guéra, A. & Barreno, E. (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environmental Microbiology 13: 806818.CrossRefGoogle ScholarPubMed
Dahlkild, Å., Källersjö, M., Lohtander, K. & Tehler, A. (2001) Photobiont diversity in the Physciaceae (Lecanorales). Bryologist 104: 527536.CrossRefGoogle Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) JmodelTest2: more models, new heuristics and parallel computing. Nature Methods 9: 772.CrossRefGoogle Scholar
Doering, M. & Piercey-Normore, M. D. (2009) Genetically divergent algae shape an epiphytic lichen community on Jack Pine in Manitoba. Lichenologist 41: 6980.CrossRefGoogle Scholar
Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 17921797.CrossRefGoogle ScholarPubMed
Fernández-Mendoza, F., Domaschke, S., Garcia, M. A., Jordan, P., Martín, M. P. & Printzen, C. (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata . Molecular Ecology 20: 12081232.CrossRefGoogle ScholarPubMed
Friedl, T. (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum . Lichenologist 19: 183191.CrossRefGoogle Scholar
Friedl, T. & Büdel, B. (2008) Photobionts. In Lichen Biology. Second Edition (Nash, T. H. III, ed.): 928. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Futuyma, D. J. (1998) Evolutionary Biology. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Goloboff, P. A., Farris, J. S. & Nixon, K. C. (2008) TNT, a free program for phylogenetic analysis. Cladistics 24: 774786.CrossRefGoogle Scholar
Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696704.CrossRefGoogle ScholarPubMed
Hauck, M., Helms, G. & Friedl, T. (2007) Photobiont selectivity in the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides . Lichenologist 39: 195204.CrossRefGoogle Scholar
Hawksworth, D. L. (1972) Regional studies in Alectoria (Lichenes) II. The British species. Lichenologist 5: 181261.CrossRefGoogle Scholar
Hawksworth, D. L. (1988) The variety of fungal-algal symbioses, their evolutionary significance and the nature of lichens. Botanical Journal of the Linnean Society 96: 320.CrossRefGoogle Scholar
Hedenås, H., Blomberg, P. & Ericson, L. (2007) Significance of old aspen (Populus tremula) trees for the occurrence of lichen photobionts. Biological Conservation 135: 380387.CrossRefGoogle Scholar
Helms, G., Friedl, T., Rambold, G. & Mayrhofer, H. (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33: 7386.CrossRefGoogle Scholar
Holien, H. (1989) The genus Bryoria sect. Implexae in Norway. Lichenologist 21: 243258.CrossRefGoogle Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.CrossRefGoogle ScholarPubMed
Jørgensen, P. M. (1972) Further studies in Alectoria sect. Divaricatae DR. Svensk Botanisk Tidskrift 66: 191201.Google Scholar
Krog, H. (1980) On Bryoria chalybeiformis and some related species. Lichenologist 12: 243245.CrossRefGoogle Scholar
Kroken, S. & Taylor, J. W. (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia . Bryologist 103: 645660.CrossRefGoogle Scholar
Maddison, D. R. & Maddison, W. P. (2005) MacClade 4: Analysis of Phylogeny and Character Evolution. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Mukhtar, A., Garty, J. & Galun, M. (1994) Does the lichen alga Trebouxia occur free-living in nature: further immunological evidence. Symbiosis 17: 247253.Google Scholar
Myllys, L., Stenroos, S., Thell, A. & Kuusinen, M. (2007) High cyanobiont selectivity of epiphytic lichens in old growth boreal forest of Finland. New Phytologist 173: 621629.CrossRefGoogle ScholarPubMed
Myllys, L., Velmala, S., Holien, H., Halonen, P., Wang, L. S. & Goward, T. (2011) Phylogeny of the genus Bryoria . Lichenologist 43: 617638.CrossRefGoogle Scholar
Nelsen, M. P. & Gargas, A. (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytologist 177: 264275.CrossRefGoogle ScholarPubMed
O'Brien, H. E., Miądlikowska, J. & Lutzoni, F. (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera . European Journal of Phycology 40: 363378.CrossRefGoogle Scholar
Opanowicz, M. & Grube, M. (2004) Photobiont genetic variation in Flavocetraria nivalis from Poland (Parmeliaceae, lichenized Ascomycota). Lichenologist 41: 6980.Google Scholar
Peksa, O. & Škaloud, P. (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Molecular Ecology 20: 39363948.CrossRefGoogle ScholarPubMed
Piercey-Normore, M. D. (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii . New Phytologist 169: 331344.CrossRefGoogle ScholarPubMed
Piercey-Normore, M. D. & DePriest, P. T. (2001) Algal switching among lichen symbioses. American Journal of Botany 88: 14901498.CrossRefGoogle ScholarPubMed
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. (2013) Tracer v.1.5. Available from http://tree.bio.ed.ac.uk/software/tracer/ Google Scholar
Rambold, G., Friedl, T. & Beck, A. (1998) Photobionts in lichens: possible indicators of phylogenetic relationships? Bryologist 101: 392397.CrossRefGoogle Scholar
Rikkinen, J., Oksanen, I. & Lohtander, K. (2002) Lichen guilds share related cyanobacterial symbionts. Science 297: 357.CrossRefGoogle ScholarPubMed
Rozen, S. & Skaletsky, H. J. (2000) Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology (Krawetz, S. & Misener, S., eds): 365386. Totowa, New Jersey: Humana Press.Google Scholar
Sanders, W. B. & Lücking, R. (2002) Reproductive strategies, relichenization and thallus development observed in-situ in leaf-dwelling lichen communities. New Phytologist 155: 425435.CrossRefGoogle ScholarPubMed
Smith, C. W. (1984) Hawaii's alectoroid lichens. Pacific Science 38: 249252.Google Scholar
Stenroos, S., Högnabba, F., Myllys, L., Hyvönen, J. & Thell, A. (2006) High selectivity in symbiotic associations of lichenized ascomycetes and cyanobacteria. Cladistics 22: 230238.CrossRefGoogle Scholar
Velmala, S., Myllys, L., Halonen, P., Goward, T. & Ahti, T. (2009) Molecular data show that Bryoria fremontii and B. tortuosa (Parmeliaceae) are conspecific. Lichenologist 41: 231242.CrossRefGoogle Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal DNA genes for phylogenetics. In PCR Protocols. A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. New York: Academic Press.Google Scholar
Wornik, S. & Grube, M. (2010) Joint dispersal does not imply maintenance of partnership in lichen symbioses. Microbial Ecology 59: 150157.CrossRefGoogle Scholar
Yahr, R., Vilgalys, R. & DePriest, P. (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology 13: 33673378.CrossRefGoogle ScholarPubMed