Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T19:07:11.108Z Has data issue: false hasContentIssue false

Further species diversity in Neotropical Oropogon (Lecanoromycetes: Parmeliaceae) in Central America

Published online by Cambridge University Press:  24 June 2013

Steven D. LEAVITT
Affiliation:
Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA. Email: [email protected]
Theodore L. ESSLINGER
Affiliation:
Department of Biological Sciences, North Dakota State University, P.O. Box 6050, #2715 Stevens Hall, Fargo, North Dakota 58108-6060, USA
Matthew P. NELSEN
Affiliation:
Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Chicago, Illinois 60637, USA; and Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA
H. Thorsten LUMBSCH
Affiliation:
Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA. Email: [email protected]

Abstract

The new species Oropogon evernicus Essl. & S. Leavitt and O. protocetraricus S. Leavitt & Essl. are described from montane regions of Central America, further increasing the diversity of this genus in the New World. Oropogon evernicus is separated from O. americanus by the presence of medullary tissue directly beneath the pseudocyphellae, while O. protocetraricus is separated from O. caespitosus by the presence of protocetraric acid. The segregation of both species is confirmed by molecular sequence data (nuclear ITS, nuLSU, and β-tubulin). Both species appear to have split from their most recent common ancestor during the Miocene, supporting Miocene-dominated diversification of neotropical Oropogon species found in Central America.

Type
Articles
Copyright
Copyright © British Lichen Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amo de Paz, G., Cubas, P., Divakar, P. K., Lumbsch, H. T. & Crespo, A. (2011) Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. PLoS ONE 6: e28161.Google Scholar
Blanco, O., Crespo, A., Elix, J. A., Hawksworth, D. L. & Lumbsch, H. T. (2004) A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon 53: 959975.Google Scholar
Blanco, O., Crespo, A., Ree, R. H. & Lumbsch, H. T. (2006) Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Molecular Phylogenetics and Evolution 39: 5269.Google Scholar
Brodo, I. M. & Hawksworth, D. L. (1977) Alectoria and allied genera in North America. Opera Botanica 42: 1164.Google Scholar
Chen, J. (1996) The lichen genus Oropogon from China. Acta Mycologica Sinica 15: 173177.Google Scholar
Common, R. S. (1991) The distribution and taxonomic significance of lichenan and isolichenan in the Parmeliaceae (lichenized Ascomycotina), as determined by iodine reactions. I. Introduction and methods. II. The genus Alectoria and associated taxa. Mycotaxon 41: 67112.Google Scholar
Crespo, A., Lumbsch, H. T., Mattsson, J.-E., Blanco, O., Divakar, P. K., Articus, K., Wiklund, E., Bawingan, P. A. & Wedin, M. (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution 44: 812824.Google Scholar
Crespo, A., Kauff, F., Divakar, P. K., del-Prado, R., Pérez-Ortega, S., Amo de Paz, G., Ferencova, Z., Blanco, O., Roca-Valiente, B., Nunez-Zapata, J., et al. (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59: 17351753.Google Scholar
Cubeta, M. A., Echandi, E., Abernethy, T. & Vilgalys, R. (1991) Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 81: 13951400.Google Scholar
Culberson, C. F. & Culberson, W. L. (1978) Beta-orcinol derivatives in lichens: biogenetic evidence from Oropogon loxensis . Experimental Mycology 2: 245257.Google Scholar
Dessimoz, C. & Gil, M. (2010) Phylogenetic assessment of alignments reveals neglected tree signal in gaps. Genome Biology 11: R37.Google Scholar
Drummond, A. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.Google Scholar
Esslinger, T. L. (1980) Typification of Oropogon loxensis and description of two related species. Bryologist 83: 529532.CrossRefGoogle Scholar
Esslinger, T. L. (1989) Systematics of Oropogon (Alectoriaceae) in the New World. Systematic Botany Monographs 28: 1111.Google Scholar
Esslinger, T. L. (2002) Oropogon. In Lichen Flora of the Greater Sonoran Desert Region. Vol. I (Nash, T. H. III, Ryan, B. D., Gries, C. & Bungartz, F., eds): 302304. Tempe, Arizona: Lichens Unlimited.Google Scholar
Gardes, M. & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology Notes 2: 113118.Google Scholar
Harada, H. & Wang, L.-S. (2008) Taxonomic study on Bryoria (lichenized Ascomycota, Parmeliaceae) of east Asia (4). External morphology and anatomy of pycnidia. Lichenology 7: 159168.Google Scholar
Hawksworth, D. L. (1969) The scanning electron microscope. An aid to the study of cortical hyphal orientation in the lichen genera Alectoria and Cornicularia . Journal de Microscopie 8: 753760.Google Scholar
Kroken, S. & Taylor, J. W. (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia . Mycologia 93: 3853.Google Scholar
Leavitt, S. D., Esslinger, T. L. & Lumbsch, H. T. (2012 a) Neogene-dominated diversification in neotropical montane lichens: dating divergence events in the lichen-forming fungal genus Oropogon (Parmeliaceae). American Journal of Botany. 99: 17641777.Google Scholar
Leavitt, S. D., Esslinger, T. L., Divakar, P. K. & Lumbsch, H. T. (2012 b) Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions. BMC Evolutionary Biology 12: 176.CrossRefGoogle ScholarPubMed
Lee, M. S. Y. (2001) Unalignable sequences and molecular evolution. Trends in Ecology & Evolution 16: 681685.Google Scholar
Liu, K., Raghavan, S., Nelesen, S., Linder, C. R. & Warnow, T. (2009) Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 324: 15611564.Google Scholar
Liu, K., Warnow, T. J., Holder, M. T., Nelesen, S. M., Yu, J., Stamatakis, A. P. & Linder, C. R. (2012) SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Systematic Biology 61: 90106.Google Scholar
Lücking, R., Hodkinson, B., Stamatakis, A. & Cartwright, R. (2011) PICS-Ord: unlimited coding of ambiguous regions by pairwise identity and cost scores ordination. BMC Bioinformatics 12: 10.Google Scholar
Lumbsch, H. T. (2002) Analysis of phenolic products in lichens for identification and taxonomy. In Protocols in Lichenology: Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring (Kranner, I., Beckett, R. P. & Varma, A. K., eds): 281295. Berlin: Springer.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.Google Scholar
Rambaut, A. & Drummond, A. J. (2003) Tracer v1.5. Available at: http://tree.bio.ed.ac.uk/software/tracer/ Google Scholar
Rambaut, A. & Drummond, A. J. (2009) TreeAnnotator v1.7.4. Available at: http://beast.bio.ed.ac.uk/TreeAnnotator.Google Scholar
Singh, K. P. & Sinha, G. P. (2010) Indian Lichens: an Annotated Checklist. Botanical Survey of India. Kolkata: Ministry of Environment and Forests.Google Scholar
Sipman, H. J. M. (1989) Lichen zonation in the Parque Los Nevados transect. Studies on Tropical Andean Ecosystems 3: 461483.Google Scholar
Sipman, H. J. M. (1992) The origin of the lichen flora of the Columbian páramos. In Páramo: an Andean Ecosystem Under Human Influence (Balslev, H. & Luteyn, H. L., eds): 95109. London: Academic Press.Google Scholar
Sipman, H. J. M. (1995) Preliminary review of the lichen biodiversity of the Colombian montane forests. In Biodiversity and Conservation of Neotropical Montane Forests (Churchill, S. P., Balslev, H., Forero, E. & Luteyn, J. L., eds): 313320. Bronx: The New York Botanical Garden Press.Google Scholar
Sipman, H. J. M. (2002) The significance of the northern Andes for lichens. The Botanical Review 68: 8899.Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.Google Scholar
Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758771.Google Scholar
Thell, A., Mattsson, J.-E. & Kärnefelt, I. (1995) Lecanoralean ascus types in lichenized families Alectoriaceae and Parmeliaceae . Cryptogamic Botany 5: 120127.Google Scholar
Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 42384246.Google Scholar
Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., DiCuccio, M., Edgar, R., Federhen, S., et al. (2006) Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 35: D5D12.Google Scholar
White, T. J., Bruns, T. D., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (Innis, N., Gelfand, D., Sninsky, J. & White, T., eds): 315322. San Diego: Academic Press.Google Scholar