Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T23:34:35.938Z Has data issue: false hasContentIssue false

The effect of agriculture management and fire on epiphytic lichens on holm oak trees in the eastern Iberian Peninsula

Published online by Cambridge University Press:  29 January 2015

Isaac GARRIDO-BENAVENT
Affiliation:
Departament de Biologia Vegetal, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain. Email: [email protected]
Esteve LLOP
Affiliation:
Departament de Biologia Vegetal, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain. Email: [email protected]
Antonio GÓMEZ-BOLEA
Affiliation:
Departament de Biologia Vegetal, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain. Email: [email protected]

Abstract

For a long time, agriculture and recurrent fires have been the main factors promoting diversity changes in Mediterranean areas. We examined the effect of irrigated and non-irrigated crops and fires on the epiphytic lichen diversity of holm oak trees in the Vall d'Albaida region (Valencia, Spain). Lichen diversity was studied by calculating the LDV (Lichen Diversity Value) and the proportion of functional groups. No significant differences were observed between areas located near irrigated or non-irrigated crops. Fire-affected areas tended to harbour lower LDV and species richness than those influenced by agriculture. By using lichen functional groups, it has been shown that eutrophication tolerance, substratum pH affinity and, to some extent, thallus growth form are the main factors driving epiphytic lichen diversity in this rural area.

Type
Articles
Copyright
Copyright © British Lichen Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aragón, G., Martínez, I., Izquierdo, P., Belinchón, R. & Escudero, A. (2010 a) Effects of forest management on epiphytic lichen diversity in Mediterranean forests. Applied Vegetation Science 13: 183194.CrossRefGoogle Scholar
Aragón, G., López, R. & Martínez, I. (2010 b) Effects of Mediterranean dehesa management on epiphytic lichens. Science of the Total Environment 409: 116122.Google Scholar
Asman, W. A. H., Sutton, M. A. & Schjørring, J. K. (1997) Ammonia: emission, atmospheric transport and deposition. New Phytologist 139: 2748.Google Scholar
Asta, J., Erhardt, W., Ferretti, M., Fornasier, F., Kirschbaum, U., Nimis, P. L., Purvis, O. W., Pirintsos, S., Scheidegger, C., van Haluwyn, C., et al. (2002) Mapping lichen diversity as an indicator of environmental quality. In Monitoring with Lichens – Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds): 273279. Dordrecht: Kluwer Academic Publishers.Google Scholar
Barbero, M., Bonin, G., Loisel, R. & Quézel, P. (1990) Changes and disturbances of forest ecosystems caused by human activities in the western part of the Mediterranean basin. Vegetatio 87: 151173.Google Scholar
Benavent-Alberola, E. (1996) La Vegetació de Quatretonda. Biblioteca Quatretondenca, vol. 15. Quatretonda: Ajuntament i Cooperativa de Quatretonda.Google Scholar
Bleeker, A. & Erisman, J. W. (1998) Spatial planning as a tool for decreasing nitrogen loads in nature areas. Environmental Pollution 102: 649655.Google Scholar
Boqueras, M. (2000) Líquens Epífits i Fongs Liquenícoles del Sud de Catalunya. Flora i Comunitats. Arxius de les Seccions de Ciències 127. Barcelona: Institut d'Estudis Catalans.Google Scholar
Branquinho, C. (1997) Improving the use of lichens as biomonitors. Ph.D. thesis, University of Lisbon.Google Scholar
Branquinho, C. (2001) Lichens. In Metals in the Environment: Analysis by Biodiversity (Prasad, M. N. V., ed.): 117158. New York: Marcel Dekker.Google Scholar
Ciancio, O. & Nocentini, S. (2005) Biodiversity conservation in Mediterranean forest ecosystems: from theory to operationality. In Monitoring and Indicators of Forest Biodiversity in Europe – From Ideas to Operationality (Marchetti, M., ed.): 163168. European Forest Institute Proceedings, Volume 51. Joensuu: European Forest Institute.Google Scholar
Conca, A. & García, F. (1994) Estudi Botànic de la Vall d'Albaida (Zona Occidental). Collecció Textos Bàsics núm. VI, Excm. Ontinyent: Ajuntament d'Ontinyent.Google Scholar
Fos, S., Calatayud, A. & Barreno, E. (2001) Diversidad liquénica asociada a fenómenos post-incendio en los alcornocales valenciano-castellonenses. Botanica Complutensis 25: 103113.Google Scholar
Frati, L., Caprasecca, E., Santoni, S., Gaggi, G., Guttová, A., Gaudino, S., Pati, A., Rosamilia, S., Pirintsos, S. A. & Loppi, S. (2006) Effects of NO2 and NH3 from road traffic on epiphytic lichens. Environmental Pollution 142: 5864.Google Scholar
Geebelen, W. & Hoffman, M. (2001) Evaluation of bioindication methods using epiphytes by correlating with SO2-pollution parameters. Lichenologist 33: 249260.CrossRefGoogle Scholar
Giordani, P. (2007) Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environmental Pollution 46: 317323.CrossRefGoogle Scholar
Giordani, P., Brunialti, G. & Alleteo, D. (2002) Effects of atmospheric pollution on lichen biodiversity (LB) in a Mediterranean region (Liguria, northwest Italy). Environmental Pollution 118: 5364.Google Scholar
Giordani, P., Incerti, G., Rizzi, G., Ginaldi, F., Viglione, S., Rellini, I., Brunialti, G., Malaspina, P. & Modenesi, P. (2010) Land use intensity drives the local variation of lichen diversity in Mediterranean ecosystems sensitive to desertification. Bibliotheca Lichenologica 105: 139148.Google Scholar
Giralt, M. (1996) Líquens Epífits i Contaminació Atmosfèrica a la Plana i les Serralades Litorals Tarragonines. Arxius de les Seccions de Ciències 113. Barcelona: Institut d'Estudis Catalans.Google Scholar
Hedenås, H. & Ericson, L. (2004) Aspen lichens in agricultural and forest landscapes: the importance of habitat quality. Ecography 27: 521531.Google Scholar
Huber, C. & Kreutzer, K. (2002) Three years of continuous measurements of atmospheric ammonia concentrations over a forest stand at the Höglwald site in southern Bavaria. Plant and Soil 240: 1322.Google Scholar
Huston, M. (1979) A general hypothesis of species diversity. American Naturalist 113: 81101.Google Scholar
Isocrono, D., Matteucci, E., Ferrarese, A., Pensi, E. & Piervittori, R. (2007) Lichen colonization in the city of Turin (N Italy) based on current and historical data. Environmental Pollution 145: 258265.Google Scholar
Llop, E., Pinho, P., Matos, P., Pereira, M. J. & Branquinho, C. (2012) The use of lichen functional groups as indicators of air quality in a Mediterranean urban environment. Ecological Indicators 13: 215221.Google Scholar
Longán, A., Gaya, E. & Gómez-Bolea, A. (1999) Post-fire colonization of a Mediterranean forest stand by epiphytic lichens. Lichenologist 31: 389395.Google Scholar
Loppi, S. & De Dominicis, V. (1996) Lichens as long-term biomonitors of air quality in central Italy. Acta Botanica Neerlandica 45: 563570.Google Scholar
Loppi, S. & Pirintsos, S. A. (2000) Effect of dust on epiphytic lichen vegetation in the Mediterranean area (Italy and Greece). Israel Journal of Plant Sciences 48: 9195.Google Scholar
Loppi, S., Ivanov, D. & Boccardi, R. (2002) Biodiversity of epiphytic lichens and air pollution in the town of Siena (Central Italy). Environmental Pollution 116: 123128.Google Scholar
McCune, B. & Mefford, M. J. (2011) PC-ORD: Multivariate Analysis of Ecological Data. Version 6.0. Gleneden Beach, Oregon: MjM Software.Google Scholar
Nimis, P. L. & Martellos, S. (2008) ITALIC - The Information System on Italian Lichens. Version 4.0. University of Trieste, Deptartment of Biology, IN4.0/1. http://dbiodbs.univ.trieste.it/ accessed: 12.09.2012.Google Scholar
Nimis, P., Lazzarin, G. & Gasparo, D. (1991) Lichens as bioindicators of air pollution by SO2 in the Veneto region (NE Italy). Studia Geobotanica 11: 376.Google Scholar
Paoli, L., Guttová, A. & Loppi, S. (2006) Assessment of environmental quality by the diversity of epiphytic lichens in a semi-arid Mediterranean area (Val Basento, South Italy). Biologia 61: 353359.Google Scholar
Phoenix, G. K., Hicks, W. K., Cinderby, S., Kuylenstierna, J. C. I., Stock, W. D., Dentener, F. J., Giller, K. E., Austin, A. T., Lefroy, R. D. B., Gimeno, B. S., et al. (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology 12: 470476.CrossRefGoogle Scholar
Pinho, P., Augusto, S., Martins-Loução, M. A., Pereira, M. J., Soares, A., Máguas, C. & Branquinho, C. (2008 a) Causes of change in nitrophytic and oligotrophic lichen species in a Mediterranean climate: impact of land cover and atmospheric pollutants. Environmental Pollution 154: 380389.CrossRefGoogle Scholar
Pinho, P., Augusto, S., Máguas, C., Pereira, M. J., Soares, A. & Branquinho, C. (2008 b) Impact of neighbourhood land-cover in epiphytic lichen diversity: analysis of multiple factors working at different spatial scales. Environmental Pollution 151: 414422.Google Scholar
Pinho, P., Dias, T., Cruz, C., Sim, Y. T., Sutton, M. A., Martins-Loução, M. A., Máguas, C. & Branquinho, C. (2011) Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. Journal of Applied Ecology 48: 11071116.Google Scholar
Pinho, P., Bergamini, A., Carvalho, P., Branquinho, C., Stofer, S., Scheidegger, C. & Máguas, C. (2012) Lichen functional groups as ecological indicators of the effects of land-use in Mediterranean ecosystems. Ecological Indicators 15: 3642.Google Scholar
Pirintsos, S. A. & Loppi, S. (2003) Lichens as bioindicators of environmental quality in dry Mediterranean areas: a case study from northern Greece. Israel Journal of Plant Sciences 51: 143151.Google Scholar
Ruisi, S., Zucconi, L., Fornasier, F., Paoli, L., Frati, L. & Loppi, S. (2005) Mapping environmental effects of agriculture with epiphytic lichens. Israel Journal of Plant Sciences 53: 115124.Google Scholar
Ruoss, E. (1999) How agriculture affects lichen vegetation in Central Switzerland. Lichenologist 31: 6373.Google Scholar
Sanz, M. J., Calatayud, V. & Sánchez, G. (2000) Macrolíquenes epífitos en las parcelas de nivel II de la red de seguimiento de la salud de los bosques de España. Ecología (Madrid) 14: 117128.Google Scholar
StatSoft Inc. (2013) STATISTICA (data analysis software system), version 12. Available from: www.statsoft.com.Google Scholar
Suding, K. N., Collins, S. L., Gough, L., Clark, C., Cleland, E. E., Gross, K. L., Milchunas, D. G. & Pennings, S. (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America 102: 43874392.Google Scholar
Svoboda, D., Peksa, O. & Veselá, J. (2010) Epiphytic lichen diversity in central European oak forests: assessment of the effects of natural environmental factors and human influences. Environmental Pollution 158: 812819.Google Scholar
Valladares, F. (2008) A mechanistic view of the capacity of forests to cope with climate change. In Managing Forest Ecosystems: the Challenge of Climate Change (Bravo, F., Le May, V., Jandl, R. & von Gadow, K., eds): 1540. Berlin: Springer Verlag.Google Scholar
van Herk, C. M. (1999) Mapping of ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31: 920.Google Scholar
van Herk, C. M. (2001) Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33: 419441.Google Scholar
Vilsholm, R. L., Wolseley, P. A., Søchting, U. & Chimonides, P. J. (2009) Biomonitoring with lichens on twigs. Lichenologist 41: 189202.Google Scholar
Vokou, D., Pirintsos, S. A. & Loppi, S. (1999) Lichens as bioindicators of temporal variations in air quality around Thessaloniki, northern Greece. Ecological Research 14: 8996.Google Scholar
Wolseley, P. A. & Aguirre-Hudson, B. (1997) Fire in tropical dry forests: corticolous lichens as indicators of recent ecological changes in Thailand. Journal of Biogeography 24: 345362.CrossRefGoogle Scholar
Wolseley, P. A. & Pryor, K. V. (1999) The potential of epiphytic twig communities on Quercus petraea in a Welsh woodland site (Tycanol) for evaluating environmental changes. Lichenologist 31: 4161.Google Scholar
Wolseley, P. A., James, P. W., Theobald, M. R. & Sutton, M. A. (2006) Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources. Lichenologist 38: 161176.Google Scholar
Zavala, M. A., Espelta, J. M. & Retana, J. (2000) Constraints and trade-offs in Mediterranean plant communities: the case of holm oak-Aleppo pine forests. Botanical Review 66: 119149.CrossRefGoogle Scholar