Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T22:58:10.222Z Has data issue: false hasContentIssue false

Determination of usnic and perlatolic acids and identification of olivetoric acids in Northern reindeer lichen (Cladonia stellaris) extracts

Published online by Cambridge University Press:  01 October 2010

Annika I. SMEDS
Affiliation:
Process Chemistry Centre, Laboratory of Wood and Paper Chemistry, Åbo Akademi University, Porthansgatan 3-5, FI-20500 Turku, Finland. Email: [email protected]
Minna-Maarit KYTÖVIITA
Affiliation:
Department of Biological and Environmental Science, PL 35, FI-40014, University of Jyväskylä, Finland.

Abstract

The ecologically important lichen Cladonia stellaris forms thick carpets in boreal forest floors. In addition to affecting temperature and water conditions in the soil underneath, the secondary metabolites formed by the lichen layer are of ecological interest. In this paper, we investigated the distribution of lichen acids in C. stellaris collected at different latitudes in Finland and developed methods to quantify the two optical enantiomers of usnic acid separately. The lichen extracts were analysed by high-performance liquid chromatography (HPLC) with UV and mass spectrometric (MS) detection and by gas chromatography with flame ionization (GC-FID) and MS detection. Usnic acid and perlatolic acid were quantified using GC-FID. The concentration of usnic acid in the top 20 mm of the lichen thallus ranged from 0·48–3·08% of dry weight, and that of perlatolic acid from 0·08–0·54%. The enantiomeric composition of usnic acid was determined using a chiral HPLC column coupled to an electrospray ionization-tandem mass spectrometer. (−)-Usnic acid was found to be the predominating enantiomer in all extracts; the proportion of (+)-usnic acid ranged from 0·4%–10·0%. Olivetoric acid methyl ester, diphenylmethanol, and 5-pentylresorcinol were identified, and several other olivetoric acid-type compounds were tentatively identified in the extracts.

Type
Research Article
Copyright
Copyright © British Lichen Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auclair, A. N. D. & Rencz, A. N. (1982) Concentration, mass, and distribution of nutrients in a subarctic Picea mariana – Cladonia alpestris ecosystem. Canadian Journal of Forest Research 12: 947968.Google Scholar
Cardarelli, M., Serino, G., Campanella, L., Ercole, P., De Cicco Nardone, F., Alesiani, O. & Rossiello, F. (1997) Antimitotic effects of usnic acid on different biological systems. Cellular and Molecular Life Sciences 53: 667672.Google Scholar
Cocchietto, M., Skert, N., Nimis, P. L. & Sava, G. (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89: 137146.CrossRefGoogle Scholar
Culberson, C. F. & Esslinger, T. L. (1976) 4-O-Methylolivetoric and loxodellic acids: new depsides from new species of brown parmeliae. Bryologist 79: 4246.Google Scholar
De Angelis, F., Di Tullio, A., Ceci, R. & Quaresima, R. (2001) Investigation by SPME and GC/MS of secondary metabolites in lichens. Advances in Mass Spectrometry 15: 895896.Google Scholar
Elix, J. A. (1996) Biochemistry and secondary metabolites. In Lichen Biology (Nash, T. H., ed.): 154180. Cambridge: Cambridge Univesity Press.Google Scholar
Elix, J. A., Wirtz, N. & Lumbsch, H. T. (2007) Studies on the chemistry of some Usnea species of the Neuropogon group (Lecanorales, Ascomycota). Nova Hedwigia 85: 491501.Google Scholar
Emmerich, R., Giez, I., Lange, O. L. & Proksch, P. (1993) Toxicity and antifeedant activity of lichen compounds against the polyphagous herbivorous insect Spodoptera littoralis. Phytochemistry 33: 13891394.Google Scholar
Falk, A., Green, T. K. & Barboza, P. (2008) Quantitative determination of secondary metabolites in Cladina stellaris and other lichens by micellar electrokinetic chromatography. Journal of Chromatography A 1182: 141144.Google Scholar
Gauslaa, Y. (2005). Lichen palatability depends on investments in herbivore defence. Oecologia 143: 94105.CrossRefGoogle Scholar
Ghione, M., Parrello, D. & Grasso, L. (1988) Usnic acid revisited, its activity on oral flora. Chemioterapia 7: 302305.Google Scholar
Gianini, A. S., Marques, M. R., Carvalho, N. C. P. & Honda, N. K. (2008) Activities of 2,4-dihydroxy-6-n-pentylbenzoic acid derivatives. Zeitschrift für Naturforschung, C: Journal of Biosciences 63: 2934.CrossRefGoogle Scholar
Guo, L., Shi, Q., Fang, J. L., Mei, N., Ali, A. A., Lewis, S. M., Leakey, J. E. A. & Frankos, V. H. (2008) Review of usnic acid and Usnea barbata toxicity. Journal of Environmental Science and Health Part C – Environmental Carcinogenesis and Ecotoxicology Reviews 26: 317338.Google Scholar
Halama, P. & van Haluwyn, C. (2004) Antifungal activity of lichen extracts and lichenic acids. BioControl 49: 95107.Google Scholar
Hausen, B. M., Emde, L. & Marks, V. (1993) An investigation of the allergenic constituents of Cladonia stellaris (Opiz) Pous & Vezda (‘silver moss', ‘reindeer moss' or ‘reindeer lichen’). Contact Dermatitis 28: 7076.Google Scholar
Huneck, S., Djerassi, C., Becher, D., Barber, M., von Ardenne, M., Steinfelder, K. & Tümmler, R. (1968) FlechteninhaltstoffeXI. Massenspektrometrie und ihre anwendung auf strukturelle und stereochemische probleme-CXXIII. Massenspektrometrie von Depsiden, Depsidonen, Depsonen, Dibenzofuranen und Diphenylbutadienen mit positiven und negativen Ionen. Tetrahedron 24: 27072755.Google Scholar
Huovinen, K. (1985) Variation in lichen acids in Cladina stellaris and Cladina rangiferina in Finland and North Norway. Acta Pharmaca Fennica 94: 113123.Google Scholar
Huovinen, K. & Ahti, T. (1986) The composition and contents of aromatic lichen substances in the genus Cladina. Annales Botanici Fennici 23: 93106.Google Scholar
Ingólfsdóttir, K. (2002) Molecules of interest: usnic acid. Phytochemistry 61: 729736.Google Scholar
Kinoshita, Y., Yamamoto, Y., Yoshimura, I., Kurokawa, T. & Huneck, S. (1997) Distribution of optical isomers of usnic and isousnic acid analyzed by high performance liquid chromatography. The Journal of the Hattori Botanical Laboratory 83: 173178.Google Scholar
Lauterwein, M., Oethinger, M., Belsner, K., Peters, T. & Marre, R. (1995) In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (-)-usnic acid against aerobic and anaerobic microorganisms. Antimicrobial Agents and Chemotherapy 39: 25412543.Google Scholar
McEvoy, M., Nybakken, L., Solhaug, K. A. & Gauslaa, Y (2006) UV triggers the synthesis of the widely distributed secondary lichen compound usnic acid. Mycological Progress 5: 221229.Google Scholar
Nybakken, L. & Julkunen-Tiitto, R. (2006) UV-B induces usnic acid in reindeer lichens. Lichenologist 38: 477485.Google Scholar
Oksanen, I. (2006) Ecological and biotechnological aspects of lichens. Applied Microbiology and Biotechnology 73: 723734.Google Scholar
Piovano, M., Garbarino, J. A., Giannini, F. A., Correche, E. R., Feresin, G., Tapia, A., Zacchino, S. & Enriz, R. D. (2002) Evaluation of antifungal and antibacterial activities of aromatic metabolites from lichens. Boletin de la Sociedad Chilena de Quimica 47: 235240.Google Scholar
Pöykkö, H., Hyvärinen, M., Backor, M. (2005) Removal of lichen secondary metabolites affects food choice and survival of lichenivorous moth larvae. Ecology 86: 26232632.Google Scholar
Roach, J. A. G., Musser, S. M., Morehouse, K. & Woo, J. Y. J. (2006) Determination of usnic acid in lichen toxic to elk by liquid chromatography with ultraviolet and tandem mass spectrometric detection. Journal of Agricultural and Food Chemistry 54: 24842490.Google Scholar
Robertson, J. & Piercey-Normore, M. D. (2007) Gene flow in symbionts of Cladonia arbuscula. Lichenologist 39: 6982.Google Scholar
Romagni, J. G., Meazza, G., Nanayakkara, N. P. D. & Dayan, F. E. (2000) The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p-hydroxyphenoylpyruvate dioxygenase. FEBS Letters 480: 301305.CrossRefGoogle Scholar
Solhaug, K. A. & Gauslaa, Y. (2001) Acetone rinsing – a method for testing ecological and physiological roles of secondary compounds in living lichens. Symbiosis 30: 301315.Google Scholar
Stark, S., Kytöviita, M.-M., & Neumann, A. (2007) The phenolic compounds in Cladonia lichens are not antimicrobial in soils. Oecologia 152: 299306.CrossRefGoogle Scholar
Türk, H., Yilmaz, M., Tay, T., Türk, A. & Kivanc, M. (2006). Antimicrobial activity of extracts of chemical races of the lichen Pseudevernia furfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Zeitschrift für Naturforschung 61: 499507.Google Scholar
Wang, X. & Yang, B. (2004) Chemical constituents of Cladonia stellaris. Zhongcaoyao 35: 10901093.Google Scholar