Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T21:20:53.277Z Has data issue: false hasContentIssue false

Culture studies on the mycobiont of Caloplaca erythrantha (Tuck.) Zahlbr. (Teloschistaceae): high production of major lichen secondary metabolites

Published online by Cambridge University Press:  08 June 2012

Alejandra T. FAZIO
Affiliation:
UMYMFOR-Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Ciudad Autónoma de Buenos Aires, Argentina. Email: [email protected]
Mónica T. ADLER
Affiliation:
PROPLAME-PRHIDEB-Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Ciudad Autónoma de Buenos Aires, Argentina
María D. BERTONI
Affiliation:
PROPLAME-PRHIDEB-Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Ciudad Autónoma de Buenos Aires, Argentina
Marta S. MAIER*
Affiliation:
UMYMFOR-Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Ciudad Autónoma de Buenos Aires, Argentina. Email: [email protected]

Abstract

A strain of the lichen mycobiont of Caloplaca erythrantha, isolated from ascospores, was cultured axenically on different solid media. Four of the media employed supported the development of colonies and production of the two major lichen secondary metabolites. These media were: BMYE (mannitol 2%, yeast extract 0·1%, in Bold's basal medium); MEYE (malt extract 2%, yeast extract 0·2%, in distilled water); Hamada's MY10 (malt extract 1%, yeast extract 0·4%, sucrose 10%, in distilled water); and the new BMRM (Bold mannitol rich medium, mannitol 5·3%, malt extract 1%, yeast extract 0·4% in Bold's mineral medium). Percentages refer to final medium volume. The fungal colonies developed well on the four media and produced emodin and 7-chloroemodin, the major secondary compounds of the lichen apothecia. Crystals deposited richly on the external surface of the hyphae, as observed with an optical microscope. The two anthraquinones were purified from the lichen thallus, apothecia and cultured mycelia, and identified by chromatographic (TLC, HPLC) and spectroscopic (NMR, MS) methods. The analysis of lichen apothecia revealed the presence of emodin (0·90% w/w) and 7-chloroemodin (0·56% w/w), whereas colonies cultured for five months generally produced higher percentages than the lichen: 1·72% emodin and 0·30% 7-chloroemodin on BMYE; 0·21% and 0·95% on MEYE; 7·82% and 7·48% on MY10; and 11·70% and 10·80% on BMRM. These results show that the production of both anthraquinones was promoted significantly in mycobiont cultures with high concentrations of the carbon sources sucrose or mannitol, with a higher effect being observed with the latter.

Type
Research Article
Copyright
Copyright © British Lichen Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadjian, V. (1993) The Lichen Symbiosis. New York: Wiley & Sons.Google Scholar
Brunauer, G., Hager, A., Grube, M., Türk, R. & Stocker-Wörgötter, E. (2007) Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultural resynthesis stages. Plant Physiology and Biochemistry 45: 146151.CrossRefGoogle ScholarPubMed
Brunauer, G., Muggia, L., Stocker-Wörgötter, E. & Grube, M. (2009) A transcribed polyketide synthase gene from Xanthoria elegans. Mycological Research 113: 8292.CrossRefGoogle ScholarPubMed
Cai, J., Rassak, A., Hering, J., Saed, A., Babcock, T. A., Helton, S. & Espat, N. J. (2008) Feasible evaluation of emodin (Rhubarb extract) as an inhibitor of pancreatic cancer cell proliferation in vitro. Journal of Parenteral and Enteral Nutrition 32: 190196.CrossRefGoogle ScholarPubMed
Chooi, Y. H. (2008) Genetic potential of lichen-forming fungi in polyketide biosynthesis. Ph.D. Thesis, RMIT University.Google Scholar
Chooi, Y. H., Stalker, D. M., Davis, M. A., Fujii, I., Elix, J. A., Louwhoff, S. H. J. J. & Lawrie, A. C. (2008) Cloning and sequence characterization of a non-reducing polyketide synthase gene from the lichen Xanthoparmelia semiviridis. Mycological Research 112: 147161.CrossRefGoogle ScholarPubMed
Culberson, C. F. & Ammann, K. (1979) Standardmethode für Dünnschicht- chromatographie von Flechtensubstanzen. Herzogia 5: 124.CrossRefGoogle Scholar
Deason, T. R. & Bold, H. C. (1960) Phycological studies I. Exploratory studies of Texas soil algae. University of Texas Publication 6022: 172.Google Scholar
Elix, J. A. & Stocker-Wörgotter, E. (2008) Biochemistry of secondary metabolites. In Lichen Biology 2nd edition (Nash, T. H. III, ed.): 104133. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ernst-Russell, M. A., Elix, J. A., Chai, C. L., Willis, A. C., Hamada, N. & Nash, T. H. III (1999) Hybocarpone, a novel cytotoxic naphthazarin derivative from mycobiont cultures of the lichen Lecanora hybocarpa. Tetrahedron Letters 40: 63216324.CrossRefGoogle Scholar
Fazio, A. T., Adler, M. T., Bertoni, M. D., Sepulveda, C. S., Damonte, E. B. & Maier, M. S. (2007) Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Zeitschrift für Naturforschung 62C: 543549.CrossRefGoogle Scholar
Fazio, M. T., Bertoni, M. D., Adler, M. T., Ruiz, L. B., Rosso, M. L., Muggia, L., Hager, A., Stocker-Wörgötter, E. & Maier, M. S. (2009) Culture studies on the mycobiont isolated from Parmotrema reticulatum (Taylor) Choisy: metabolite production under different conditions. Mycological Progress 8: 359365.CrossRefGoogle Scholar
Hamada, N. (1989) The effect of various culture conditions on depside production by an isolated lichen mycobiont. Bryologist 92: 310313.CrossRefGoogle Scholar
Hamada, N., Miyagawa, H., Miyawaki, H. & Masakane, I. (1996) Lichen substances in mycobionts of crustose lichens cultured on media with extra sucrose. Bryologist 99: 7174.CrossRefGoogle Scholar
Hamada, N., Tanahashi, T., Miyagawa, H. & Miyawaki, H. (2001) Characteristics of secondary metabolites from isolated mycobionts. Symbiosis 31: 2333.Google Scholar
Ho, T. Y., Wu, S. L., Chen, J. C., Li, C. C. & Hsiang, C. Y. (2007) Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Research 74: 92101.CrossRefGoogle ScholarPubMed
Hsiang, C. Y. & Ho, T. Y. (2008) Emodin is a novel alkaline nuclease inhibitor that suppresses herpes simplex virus type 1 yields in cell cultures. British Journal of Pharmacology 155: 227235.CrossRefGoogle ScholarPubMed
Huang, Q., Shen, H. M., Shui, G., Wenk, M. R. & Ong, C. N. (2006) Emodin inhibits tumor cell adhesion disruption of the membrane lipid raft-associated integrin signaling pathway. Cancer Research 66: 58075815.CrossRefGoogle ScholarPubMed
Huneck, S. (2001) New results on the chemistry of lichen substances. In Progress in the Chemistry of Organic Natural Products 81 (Herz, W., Falk, H., Kirby, G. W. & Moore, R. E., eds): 1276. New York: Springer.Google Scholar
Huneck, S. & Yoshimura, I. (1996) Identification of Lichen Substances. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Leuckert, C., Ahmadjian, V., Culberson, C. F. & Johnson, A. (1990) Xanthones and depsidones of the lichen Lecanora dispersa in nature and of its mycobiont in culture. Mycologia 82: 370378.CrossRefGoogle Scholar
Lilly, V. G. & Barnett, H. L. (1951) Physiology of the Fungi. New York: McGraw-Hill.Google Scholar
Manojlovic, N. T., Solujic, S., Sukdolak, S. & Milosev, M. (2005) Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. Fitoterapia 76: 244246.CrossRefGoogle ScholarPubMed
Müller, K. (2001) Pharmaceutically relevant metabolites from lichens. Applied Microbiology and Biotechnology 56: 916.Google ScholarPubMed
Muggia, L., Schmitt, I. & Grube, M. (2009) Lichens as treasure chests of natural products. SIM News 59: 8597.Google Scholar
Nakano, H., Komiya, T. & Shibata, S. (1972) Anthraquinones of the lichens of Xanthoria and Caloplaca and their cultivated mycobionts. Phytochemistry 11: 35053508.CrossRefGoogle Scholar
Nimis, P. L. & Skert, N. (2006) Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne. Environmental and Experimental Botany 55: 175182.CrossRefGoogle Scholar
Renner, B. & Gerstner, E. (1978) Anthraquinone aus der Mycobiontenkultur und dem Thallus von Caloplaca ferruginea. Naturwissenschaften 65: 439440.CrossRefGoogle Scholar
Rosso, M. L., Bertoni, M. D., Adler, M. T. & Maier, M. S. (2003) Anthraquinones from the cultured lichen mycobionts of Teloschistes exilis and Caloplaca erythrantha. Biochemical Systematics and Ecology 31: 11971200.CrossRefGoogle Scholar
Stocker-Wörgötter, E. (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Natural Products Reports 25: 188200.CrossRefGoogle ScholarPubMed
Stocker-Wörgötter, E. & Elix, J. A. (2004) Experimental studies of lichenized fungi: formation of rare depsides and dibenzofurans by the cultured mycobiont of Bunodophoron patagonicum (Sphaerophoraceae, lichenized Ascomycota). Bibliotheca Lichenologica 88: 659669.Google Scholar
Stocker-Wörgötter, E. & Elix, J. A. (2009) Experimental studies of lichen-forming fungi: formation of depsidones and shikimic-acid derivatives by the cultured mycobionts of three selected species of Rhizocarpon (Lecideaceae, lichenized Ascomycota). Bibliotheca Lichenologica 100: 495512.Google Scholar
Takahashi, K., Kinoshita, K., Yamamoto, Y., Koyama, K. & Yoshimura, I. (2005) Chemical constituents from lichens for pharmaceutical and industrial uses. Folia Cryptogamica Estonica 41: 109114.Google Scholar
Wang, Y., Kim, J. A., Cheong, Y. H., Koh, Y. J. & Hur, J-S. (2012) Isolation and characterization of a non-reducing polyketide synthase gene from the lichen-forming fungus Usnea longissima. Mycological Progress 11: 7583.CrossRefGoogle Scholar
Yang, Y-Ch., Lim, M-Y. & Lee, H-S. (2003) Emodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against mosquito species. Journal of Agricultural and Food Chemistry 51: 76297631.CrossRefGoogle ScholarPubMed