Hostname: page-component-599cfd5f84-8nxqw Total loading time: 0 Render date: 2025-01-07T06:57:09.571Z Has data issue: false hasContentIssue false

Coenogonium nimisii – a new isidiate epiphytic lichen similar to Porina rosei

Published online by Cambridge University Press:  22 September 2023

Jiří Malíček*
Affiliation:
Institute of Botany of the Czech Academy of Sciences, CZ-252 43 Průhonice, Czech Republic
Brian Coppins
Affiliation:
Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, UK
Zdeněk Palice
Affiliation:
Institute of Botany of the Czech Academy of Sciences, CZ-252 43 Průhonice, Czech Republic
Lucie Vančurová
Affiliation:
Institute of Botany of the Czech Academy of Sciences, CZ-252 43 Průhonice, Czech Republic
Jan Vondrák
Affiliation:
Institute of Botany of the Czech Academy of Sciences, CZ-252 43 Průhonice, Czech Republic Faculty of Biological Sciences, University of South Bohemia, CZ-370 05 České Budějovice, Czech Republic
Neil Sanderson
Affiliation:
Green Close, Woodlands, Southampton SO40 7HU, UK
*
Corresponding author: Jiří Malíček; Email: [email protected]

Abstract

Our floristic work in British ancient forests resulted in a description of a frequently reported but misidentified species, Coenogonium nimisii. Its thallus is very similar to Porina rosei, but the apothecia and pycnidia correspond with C. luteum. Sterile collections are not easy to distinguish but the new species differs from P. rosei in several microscopic characters of the isidia. Coenogonium nimisii is so far known from bark and epiphytic bryophytes, rarely mossy rocks, in ancient humid forests of Great Britain and Ireland. The genus Coenogonium is poorly represented by molecular data in the GenBank database. Our preliminary results revealed distinct genetic lineages within two traditionally circumscribed species, C. luteum and C. pineti, which may represent cryptic species.

Type
Standard Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of the British Lichen Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aptroot, A and Rodrigues, AFF (2005) New lichen records for the Azores, with the report of some tropical species new to Europe. Cryptogamie, Mycologie 26, 273280.Google Scholar
Blattner, FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 27, 11801186.Google Scholar
Borgato, L, Ertz, D, Van Rossum, F and Verbeken, A (2022) The diversity of lichenized trentepohlioid algal (Ulvophyceae) communities is driven by fungal taxonomy and ecological factors. Journal of Phycology 58, 582602.Google Scholar
Cannon, P, Malíček, J, Sanderson, N, Benfield, B, Coppins, B and Simkin, J (2021) Ostropales: Coenogoniaceae, including the genus Coenogonium. Revisions of British and Irish Lichens 3, 14.Google Scholar
Černajová, I, Schiefelbein, U and Škaloud, P (2022) Lichens from the littoral zone host diverse ulvophycean photobionts. Journal of Phycology 58, 267280.Google Scholar
Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.Google Scholar
Davydov, EA, Yakovchenko, LS, Konoreva, L, Chesnokov, S, Ezhkin, A, Galanina, IA and Paukov, AG (2021) New records of lichens from the Russian Far East. II. Species from forest habitats. Opuscula Philolichenum 20, 5470.Google Scholar
Ferencová, Z, Rico, VJ and Hawksworth, DL (2017) Extraction of DNA from lichen-forming and lichenicolous fungi: a low-cost fast protocol using Chelex. Lichenologist 49, 521525.Google Scholar
Follmann, G (1990) Zur Kenntnis der Flechtenflora und Flechtenvegetation von Madeira und den umliegenden Inseln. I. Chorologisch-soziologischer Abriss. Zeitschrift Courier Forschungsinstitut Senckenberg 129, 91102.Google Scholar
Gardes, M and Bruns, TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2, 113118.Google Scholar
Grube, M, Muggia, L, Baloch, E, Hametner, C and Stocker-Wörgötter, E (2017) Symbioses of lichen-forming fungi with trentepohlialean algae. In Grube, M, Seckbach, J and Muggia, L (eds), Algal and Cyanobacteria Symbioses. London: World Scientific Publishing Europe, pp. 85110.Google Scholar
Guindon, S and Gascuel, O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.Google Scholar
Hall, TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Kalb, K and Hafellner, J (1992) Bemerkenswerte Flechten und lichenicole Pilze von der Insel Madeira. Herzogia 9, 45102.Google Scholar
Kantvilas, G, Rivas Plata, E and Lücking, R (2018) The lichen genus Coenogonium in Tasmania. Lichenologist 50, 571582.Google Scholar
Katoh, K and Standley, DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772780.Google Scholar
Katoh, K, Kuma, K, Toh, H and Miyata, T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33, 511518.Google Scholar
Lücking, R, Hodkinson, BP and Leavitt, SD (2017) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – approaching one thousand genera. Bryologist 119, 361416.Google Scholar
Ludwig, LL (2014) Coenogonium fruticulosum, a new isidiate species from New Zealand. Australasian Lichenology 75, 1827.Google Scholar
McCarthy, PM and Kantvilas, G (2017) A new species of Porina (lichenized Ascomycota, Porinaceae) from Tasmania. Telopea Journal of Plant Systematics 20, 109113.Google Scholar
Miadlikowska, J, Kauff, F, Högnabba, F, Oliver, JC, Molnár, K, Fraker, E, Gaya, E, Hafellner, J, Hofstetter, V, Gueidan, C, et al. (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79, 132168.Google Scholar
Nelsen, MP, Plata, ER, Andrew, CJ, Lücking, R and Lumbsch, HT (2011) Phylogenetic diversity of trentepohlialean algae associated with lichen-forming fungi. Journal of Phycology 47, 282290.Google Scholar
Orange, A, James, PW and White, FJ (2010) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Orange, A, Palice, Z and Klepsland, J (2020) A new isidiate saxicolous species of Porina (Ascomycota, Ostropales, Porinaceae). Lichenologist 52, 267277.Google Scholar
Rivas Plata, E, Lücking, R, Aptroot, A, Sipman, HJM, Chaves, JL, Umaña, L and Lizano, D (2006) A first assessment of the Ticolichen biodiversity inventory in Costa Rica: the genus Coenogonium (Ostropales: Coenogoniaceae), with a world-wide key and checklist and a phenotype-based cladistic analysis. Fungal Diversity 23, 255321.Google Scholar
Rodrigues, AFF and Aptroot, A (2005) New data and corrections to the list of lichens and lichenicolous fungi from the Azores. In Borges, PAV, Cunha, R, Gabriel, R, Martins, AF, Silva, L and Vieira, V (eds), A List of the Terrestrial Fauna and Flora from the Azores. Horta: Direcção Regional do Ambiente and Universidade dos Açores, pp. 231247.Google Scholar
Ronquist, F and Huelsenbeck, JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.Google Scholar
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA and Huelsenbeck, JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.Google Scholar
Sérusiaux, E (1991) Porina rosei sp. nov., une espèce nouvelle d'Europe occidentale. Cryptogamie, Bryologie et Lichénologie 12, 3139.Google Scholar
Škaloud, P and Rindi, F (2013) Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). Journal of Eukaryotic Microbiology 60, 350362.Google Scholar
Škaloud, P, Rindi, F, Boedeker, C and Leliaert, F (2018) Freshwater Flora of Central Europe, Vol 13: Chlorophyta: Ulvophyceae. Berlin, Heidelberg: Springer.Google Scholar
Swofford, DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Tavares, CN (1952) Contributions to the lichen flora of Macaronesia. I. Lichens from Madeira. Portugaliae Acta Biologica 3, 308391.Google Scholar
Thor, G and Vězda, A (1984) Einige neue oder bemerkenswerte Flechten mit gyalectoiden Apothecien von Nord-Indien und Nepal. Folia Geobotanica et Phytotaxonomica 19, 7182.Google Scholar
White, TJ, Bruns, TD, Lee, S and Taylor, J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, MA, Gelfand, DH, Sninsky, JJ and White, TJ (eds), PCR Protocols: a Guide to Methods and Applications. San Diego: Academic Press, pp. 315322.Google Scholar
Zhu, H, Zhao, Z, Xia, S, Hu, Z and Liu, G (2015) Morphological examination and phylogenetic analyses of Phycopeltis spp. (Trentepohliales, Ulvophyceae) from tropical China. PLoS ONE 10, e0114936.Google Scholar
Zoller, S, Scheidegger, C and Sperisen, C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31, 511516.Google Scholar
Zwickl, DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. thesis, University of Texas at Austin.Google Scholar
Supplementary material: File

Malíček et al. supplementary material

Figures S1-S4

Download Malíček et al. supplementary material(File)
File 1.1 MB