Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T04:03:49.381Z Has data issue: false hasContentIssue false

Changes in stand structure due to the cessation of traditional land use in wooded meadows impoverish epiphytic lichen communities

Published online by Cambridge University Press:  05 April 2011

Ede LEPPIK*
Affiliation:
Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., Tartu 51005, Estonia.
Inga JÜRIADO
Affiliation:
Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., Tartu 51005, Estonia.
Jaan LIIRA
Affiliation:
Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., Tartu 51005, Estonia.

Abstract

Wooded meadows with a history of traditional land use over thousands of years support a great diversity of various taxa. Today, however, high-species-rich communities in wooded meadows are threatened because of the cessation of traditional management in large areas. We studied lichen communities on 136 deciduous trees (Betula spp., Fraxinus excelsior and Quercus robur) in 12 wooded meadows in three regions of Estonia, and assessed the effect of habitat change due to the abandonment of traditional management on epiphytic lichen species composition, considering factors on three spatial scales: regional, habitat and individual tree. The variation partitioning approach in partial Canonical Correspondence Analysis (pCCA) revealed that most of the variation in species composition is described by the species of host tree and tree bark pH. Other tree level variables, foremost tree diameter, described as much of the compositional variation as geographic location (region) or environmental conditions in wooded meadows. Of the environmental factors studied, woodland canopy cover is the strongest predictor of the change in epiphytic lichen species composition from the community type of semi-open wooded meadows to species-poor communities characteristic of secondary forest. General Linear Model (GLM) analysis of the abundance of the 35 most frequently observed lichen species revealed that more than half of them (21) are influenced by site openness (canopy cover and/or undergrowth density), showing that increasing canopy cover has a negative effect on the abundance of epiphytic lichen species characteristic of traditionally managed semi-open wooded meadows. The results emphasize that the preservation of large old deciduous trees of various species and the maintenance of the semi-open structure of stands are vitally important for the protection of epiphytic lichen communities in wooded meadows.

Type
Research Article
Copyright
Copyright © British Lichen Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aavik, T., Jõgar, Ü., Liira, J., Tulva, I. & Zobel, M. (2008) Plant diversity in a calcareous wooded meadow – the significance of management continuity. Journal of Vegetation Science 19: 475484.CrossRefGoogle Scholar
Adermann, V. (2009) Estonian Forests 2008. The Estimation of Forest Sources by Statistical Sampling Methodology. Tallinn: Metsakaitse- ja Metsauuenduskeskus [In Estonian with English summary].Google Scholar
Asta, J., Erhardt, W., Ferretti, M., Fornasier, F., Kirschbaum, U., Nimis, P. L., Purvis, O. W., Pirintsos, S., Scheidegger, C., van Haluwyn, C. & Wirth, V. (2002) Mapping lichen diversity as an indicator of environmental quality. In Monitoring with Lichens – Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds): 273279. Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Aude, E. & Poulsen, R. S. (2000) Influence of management on the species composition of epiphytic cryptogams in Danish Fagus forests. Applied Vegetation Science 3: 8188.CrossRefGoogle Scholar
Barkman, J. J. (1958) Phytosociology and Ecology of Cryptogamic Epiphytes. Assen, Netherlands: Van Gorcum.Google Scholar
Bates, J. W. & Brown, D. H. (1981) Epiphyte differentiation between Quercus petraea and Fraxinus excelsior trees in a maritime area of South West England. Vegetatio 48: 6170.CrossRefGoogle Scholar
Belinchón, R., Martínez, I., Escudero, A., Aragón, G. & Valladares, F. (2007) Edge effects on epiphytic communities in a Mediterranean Quercus pyrenaica forest. Journal of Vegetation Science 18: 8190.CrossRefGoogle Scholar
Benfield, B. (1994) Impact of agriculture on epiphytic lichens at Plymtree, East Devon. Lichenologist 26: 9196.CrossRefGoogle Scholar
Bengtsson, J., Nilsson, S. G., Franc, A. & Menozzi, P. (2000) Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecology and Management 132: 3950.CrossRefGoogle Scholar
Borcard, D., Legendre, P. & Drapeau, P. (1992) Partialling out the spatial component of ecological variation. Ecology 73: 10451055.CrossRefGoogle Scholar
Boudreault, C., Gauthier, S. & Bergeron, Y. (2000) Epiphytic lichens and bryophytes on Populus tremuloides along a chronosequence in the southwestern boreal forest of Québec, Canada. Bryologist 103: 725738.CrossRefGoogle Scholar
Boudreault, C., Coxon, D. S., Vincent, E., Bergeron, Y. & Marsh, J. (2008) Variation in epiphytic lichen and bryophyte composition and diversity along a gradient of productivity in Populus tremuloides stands of northeastern British Columbia, Canada. Écoscience 15: 101112.CrossRefGoogle Scholar
Cieśliński, S., Czyżewska, K., Klama, H. & Żarnowiec, J. (1996) Epiphytes and epiphytism. Phytocoenosis 8: 1535.Google Scholar
Cousins, S. A. O. & Eriksson, O. (2001) Plant species occurrences in a rural hemiboreal landscape: effects of remnant habitats, site history, topography and soil. Ecography 24: 461469.CrossRefGoogle Scholar
Cousins, S. A. O. & Eriksson, O. (2002) The influence of management history and habitat on plant species richness in a rural hemiboreal landscape, Sweden. Landscape Ecology 17: 517529.CrossRefGoogle Scholar
Culberson, W. L. (1955) The corticolous communities of lichens and bryophytes in the upland forests of Northern Wisconsin. Ecological Monographs 25: 215231.CrossRefGoogle Scholar
Culberson, C. F. (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography 72: 113125.CrossRefGoogle ScholarPubMed
Culberson, C. F. & Kristinsson, H. D. (1970) A standardized method for the identification of lichen products. Journal of Chromatography 46: 8593.CrossRefGoogle Scholar
Ekman, S., Fröberg, L., Kärnefelt, L., Sundin, R. & Thor, G. (1991) New or interesting lichens from Estonia. Folia Cryptogamica Estonica 28: 525.Google Scholar
Ellis, C. J. & Coppins, B. J. (2007a) 19th century woodland structure controls stand-scale epiphyte diversity in present-day Scotland. Diversity and Distributions 13: 8491.CrossRefGoogle Scholar
Ellis, C. J. & Coppins, B. J. (2007b) Reproductive strategy and the compositional dynamics of crustose lichen communities on aspen (Populus tremula L.) in Scotland. Lichenologist 39: 377391.CrossRefGoogle Scholar
Eriksson, O., Cousins, S. A. O. & Bruun, H. H. (2002) Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. Journal of Vegetation Science 13: 743748.CrossRefGoogle Scholar
Esseen, P.-A., Ehnström, B., Ericson, L. & Sjöberg, K. (1992) Boreal forests – the focal habitats of Fennoscandia. In Ecological Principles of Nature Conservation. Applications in Temperate and Boreal Environments (Hansson, L., ed): 252325. London and New York: Elsevier Applied Science.CrossRefGoogle Scholar
Friedel, A., Oheimb, v.G., Dengler, J. & Härdtle, W. (2006) Species diversity and species composition of epiphytic bryophytes and lichens – a comparison of managed and unmanaged beech forests in NE Germany. Feddes Repertorium 117: 172185.CrossRefGoogle Scholar
Fritz, Ö., Gustafsson, L. & Larsson, K. (2008) Does forest continuity matter in conservation? – a study of epiphytic lichens and bryophytes in beech forests of southern Sweden. Biological Conservation 141: 655668.CrossRefGoogle Scholar
Fritz, Ö., Niklasson, M. & Churski, M. (2009) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Applied Vegetation Science 12: 93106.CrossRefGoogle Scholar
Gauslaa, Y., Lie, M., Solhaug, K. A. & Ohlson, M. (2006) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 147: 406416.CrossRefGoogle ScholarPubMed
Giordani, P. (2006) Variables influencing the distribution of epiphytic lichens in heterogeneous areas: a case study for Liguria, NW Italy. Journal of Vegetation Science 17: 195206.CrossRefGoogle Scholar
Hansson, M. & Fogelfors, H. (2000) Management of a semi-natural grassland; results from a 15-year-old experiment in Southern Sweden. Journal of Vegetation Science 11: 3138.CrossRefGoogle Scholar
Hæggström, C.-A. (1983) Vegetation and soil of the wooded meadows in Natö, Åland. Acta Botanica Fennica 120: 166.Google Scholar
Hedenås, H. & Ericson, L. (2000) Epiphytic macrolichens as conservation indicators: successional sequence in Populus tremula stands. Biological Conservation 93: 4353.CrossRefGoogle Scholar
Ingerpuu, N., Kull, K. & Vellak, K. (1998) Bryophyte vegetation in a wooded meadow: relationships with phanerogam diversity and responses to fertilisation. Plant Ecology 134: 163171.CrossRefGoogle Scholar
Jesberger, J. A. & Sheard, J. W. (1973) A quantitative study and multivariate analysis of corticolous lichen communities in the southern boreal forest of Saskatchewan. Canadian Journal of Botany 51: 185201.CrossRefGoogle Scholar
Johansson, P., Rydin, H. & Thor, G. (2007) Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Écoscience 14: 8191.CrossRefGoogle Scholar
Jönsson, M. T., Thor, G. & Johansson, P. (2011) Environmental and historical effects on lichen diversity in managed and unmanaged wooded meadows. Applied Vegetation Science 14: 120131.CrossRefGoogle Scholar
Jüriado, I., Paal, J. & Liira, J. (2003) Epiphytic and epixylic lichen species diversity in Estonian natural forests. Biodiversity and Conservation 12: 15871607.CrossRefGoogle Scholar
Jüriado, I., Liira, J. & Paal, J. (2009a) Diversity of epiphytic lichens in boreo-nemoral forests on the North-Estonian limestone escarpment: the effect of tree level factors and local environmental conditions. Lichenologist 41: 8196.CrossRefGoogle Scholar
Jüriado, I., Liira, J., Paal, J. & Suija, A. (2009b) Tree and stand level variables influencing diversity of lichens on temperate broad-leaved trees in boreo-nemoral floodplain forests. Biodiversity and Conservation 18: 105125.CrossRefGoogle Scholar
Kaar, E. (1974) Hardwoods. In Estonian Forests (Valk, U. & Eilart, J., eds): 146155. Tallinn: Valgus [In Estonian with English summary].Google Scholar
Kalamees, K. (2004) Seenestik. In Pärandkooslused. Õpik-käsiraamat (Kukk, T., ed.): 136142. Tartu: Pärandkoosluste Kaitse Ühing [In Estonian].Google Scholar
Kricke, R. (2002) Measuring bark pH. In Monitoring with Lichens – Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds): 333336. Dordrecht: Kluwer Academic Publisher.CrossRefGoogle Scholar
Kukk, T. & Kull, K. (1997) Wooded meadows. Estonia Maritima 2: 1249 [In Estonian with English summary].Google Scholar
Kukk, T. & Sammul, M. (2006) Area of seminatural Natura 2000 habitat types in Estonia. In Year-book of the Estonian Naturalists' Society (Sammul, M., ed.): 114158. Tartu: Estonian Naturalists' Society [In Estonian with English summary].Google Scholar
Kull, K. & Zobel, M. (1991) High species richness in an Estonian wooded meadow. Journal of Vegetation Science 2: 711714.CrossRefGoogle Scholar
Laasimer, L. (1965) Vegetation of the Estonian S.S.R. Tallinn: Valgus [In Estonian with English summary].Google Scholar
Laasimer, L. & Masing, V. (1995) Flora and plant cover. In Estonia Nature (Raukas, A., ed.): 364401. Tallinn: Valgus & Eesti Entsüklopeediakirjastus [In Estonian with English summary].Google Scholar
Leppik, E. & Jüriado, I. (2008) Factors important for epiphytic lichen communities in wooded meadows of Estonia. Folia Cryptogamica Estonica 44: 7587.Google Scholar
Liira, J. & Sepp, T. (2009) Indicators of structural and habitat natural quality in boreo-nemoral forests along the management gradient. Annales Botanici Fennici 46: 308325.CrossRefGoogle Scholar
Löbel, S., Snäll, T. & Rydin, H. (2006) Species richness patterns and metapopulation processes – evidence from epiphyte communities in boreo-nemoral forests. Ecography 29: 169182.CrossRefGoogle Scholar
Lõhmus, P. (2003) Composition and substrata of forest lichens in Estonia: a meta-analysis. Folia Cryptogamica Estonica 40: 1938.Google Scholar
McCune, B. (1993) Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. Bryologist 96: 405411.CrossRefGoogle Scholar
McCune, B. & Antos, J. A. (1982) Epiphyte communities of the Swan Valley, Montana. Bryologist 85: 112.CrossRefGoogle Scholar
McCune, B. & Mefford, M. J. (1999) PC-ORD. Multivariate Analysis of Ecological Data, Version 4. Gleneden Beach, Oregon: MjM Software Design.Google Scholar
Mielke, P. W. (1984) Meteorological applications of permutation techniques based on distance functions. In Handbook of Statistics, Vol. 4. (Krishnaiah, P. R. & Sen, P. K., eds): 813830. Amsterdam: Elsevier Science Publishers.Google Scholar
Moe, B. & Botnen, A. (1997) A quantitative study of the epiphytic vegetation on pollarded trunks of Fraxinus excelsior at Havrå, Osterøy, Western Norway. Plant Ecology 129: 157177.CrossRefGoogle Scholar
Moe, B. & Botnen, A. (2000) Epiphytic vegetation on pollarded trunks of Fraxinus excelsior in four different habitats at Grinde, Leikanger, Western Norway. Plant Ecology 151: 143159.CrossRefGoogle Scholar
Nash, T. H. III. (1996) Photosynthesis, respiration, productivity and growth. In Lichen Biology. (Nash, T. H. III, ed.): 88119. Cambridge: Cambridge University Press.Google Scholar
Paal, J. (1998) Rare and threatened plant communities of Estonia. Biodiversity and Conservation 7: 10271049.CrossRefGoogle Scholar
Palmqvist, K. & Sundberg, B. (2000) Light use efficiency of dry matter gain in five macrolichens: relative impact of microclimate conditions and species-specific traits. Plant, Cell and Environment 23: 114.CrossRefGoogle Scholar
Pärtel, M., Mändla, R. & Zobel, M. (1999) Landscape history of a calcareous (alvar) grassland in Hanila, western Estonia, during the last three hundred years. Landscape Ecology 14: 187196.CrossRefGoogle Scholar
Pärtel, M., Helm, A., Reitalu, T., Liira, J. & Zobel, M. (2007) Grassland diversity related to the Late Iron Age human population density. Journal of Ecology 95: 574582.CrossRefGoogle Scholar
Poschlod, P. & WallisDeVries, M. F. (2002) The historical and socio-economic perspective of calcareous grasslands – lessons from the distant and recent past. Biological Conservation 104: 361376.CrossRefGoogle Scholar
Poska, A. & Saarse, L. (1999) Holocene vegetation and land-use history in the environs of Lake Kahala, northern Estonia. Vegetation History and Archaeobotany 8: 185197.CrossRefGoogle Scholar
Pykälä, J., Luoto, M., Heikkinen, R. K. & Kontula, T. (2005) Plant species richness and persistence of rare plants in abandoned semi-natural grasslands in northern Europe. Basic and Applied Ecology 6: 2533.CrossRefGoogle Scholar
Randlane, T. (2004) Samblikud. In Pärandkooslused. Õpik-käsiraamat (Kukk, T., ed.): 143148. Tartu: Pärandkoosluste Kaitse Ühing [in Estonian].Google Scholar
Randlane, T., Saag, A. & Suija, A. (2008) Lichenized, lichenicolous and allied fungi of Estonia. http://www.ut.ee/ial5/lich/e_liigid/samblik_e_2008.html. Cited 5 Feb 2009.Google Scholar
Ranius, T., Eliasson, P. & Johansson, P. (2008a) Large-scale occurrence patterns of red-listed lichens and fungi on old oaks are influenced both by current and historical habitat density. Biodiversity and Conservation 17: 23712381.CrossRefGoogle Scholar
Ranius, T., Johansson, P., Berg, N. & Niklasson, M. (2008b) The influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. Journal of Vegetation Science 19: 653662.CrossRefGoogle Scholar
Régent Instruments Inc. (2001) WinSCANOPY2001a manual. Quebec, Canada: Régent Instruments Inc.Google Scholar
Rose, F. (1974) The epiphytes of oak. In The British Oak (Morris, M. G., & Perring, F. H., eds): 250273. Farringdon: E. W. Classey.Google Scholar
Rose, F. (1992) Temperate forest management: its effects on bryophyte and lichen floras and habitats. In Bryophytes and Lichens in a Changing Environment (Bates, J. W. & Farmer, A. M., eds): 211233. Oxford: Clarendon Press.CrossRefGoogle Scholar
Rose, F. (2001) Parkland lichens and management. In Lichen Habitat Management (Fletcher, A., ed.): 06-106-5. London: British Lichen Society.Google Scholar
Ruchty, A., Rosso, A. L. & McCune, B. (2001) Changes in epiphyte communities as the shrub, Acer circinatum, develops and ages. Bryologist 104: 274281.CrossRefGoogle Scholar
Ruisi, S., Zucconi, L., Fornasier, F., Paoli, L., Frati, L. & Loppi, S. (2005) Mapping environmental effects of agriculture with epiphytic lichens. Israel Journal of Plant Sciences 53: 115124.CrossRefGoogle Scholar
Sanderson, N. & Wolseley, P. (2001) Management of pasture woodlands for lichens. In Lichen Habitat Management (Fletcher, A., ed.): 05-105-25. London: British Lichen Society.Google Scholar
Scheidegger, C., Groner, U., Keller, C. & Stofer, S. (2002) Biodiversity assessment tools – lichens. In Monitoring with Lichens – Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds): 359365. Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Schmidt, J., Kricke, R. & Feige, G. B. (2001) Measurements of bark pH with a modified flathead electrode. Lichenologist 33: 456460.CrossRefGoogle Scholar
Shao, J. (1997) An asymptotic theory for linear model selection. Statistica Sinica 7: 221264.Google Scholar
StatSoft Inc. (2005) Statistica for Windows, Ver 7.1. Tulsa: Statsoft, Inc.Google Scholar
Stevenson, S. K. & Coxon, D. S. (2007) Arboreal forage lichens in partial cuts – a synthesis of research results from British Columbia, Canada. Rangifer 17: 155165.CrossRefGoogle Scholar
Stone, D. F. (1989) Epiphyte succession on Quercus garryana branches in the Willamette Valley of western Oregon. Bryologist 92: 8194.CrossRefGoogle Scholar
Svenning, J.-C. (2002) A review of natural vegetation openness in north-western Europe. Biological Conservation 104: 133148.CrossRefGoogle Scholar
Škornik, S., Šajna, N., Kramberger, B., Kaligarič, S. & Kaligarič, M. (2008) Last remnants of riparian wooded meadows along the Middle Drava River (Slovenia): species composition is a response to light conditions and management. Folia Geobotanica 43: 431445.CrossRefGoogle Scholar
Talvi, T. (1995) Carabid beetle assemblages (Coleoptera) in a wooded meadow and in the adjacent habitats on the Saaremaa Island, Estonia. Entomologica Fennica 6: 169175.CrossRefGoogle Scholar
Tedersoo, L., Suvi, T., Larsson, E. & Kõljalg, U. (2006) Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycological Research 110: 734748.CrossRefGoogle Scholar
ter Braak, C. J. F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 11671179.CrossRefGoogle Scholar
ter Braak, C. J. F. & Šmilauer, P. (2002) CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, New York: Microcomputer Power.Google Scholar
Thor, G., Johansson, P. & Jönsson, M. T. (2010) Lichen diversity and red-listed lichen species relationships with tree species and diameter in wooded meadows. Biodiversity and Conservation 19: 23072328.CrossRefGoogle Scholar
van Herk, C. M. (1999) Mapping of ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31: 920.CrossRefGoogle Scholar
Vera, F. W. M. (2000) Grazing Ecology and Forest History. Wallingford, UK: CABI Publishing.CrossRefGoogle Scholar
Web map server of Estonian Land Board (2008) X-GIS system. http://xgis.maaamet.ee. Cited 1 Feb 2008.Google Scholar