Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T04:00:29.907Z Has data issue: false hasContentIssue false

Biomonitoring with lichens on twigs

Published online by Cambridge University Press:  03 March 2009

René LARSEN VILSHOLM
Affiliation:
Georgsvej 6, Arnager, 3700 Rønne, Denmark. Email: [email protected]
Pat A. WOLSELEY
Affiliation:
Department of Botany, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom.
Ulrik SØCHTING
Affiliation:
Biological Institute, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark.
P. Jim CHIMONIDES
Affiliation:
Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom.

Abstract

Two surveys of the lichen and bryophyte flora growing on oak twigs from a Welsh and a Danish locality were compared with additional data on bark pH and % nitrogen in thalli of Hypogymnia physodes. Despite differences in climate and lichen flora, both sites showed a shift in the lichen communities from nitrogen sensitive (nitrophobe) to nitrogen tolerant (nitrophile) species, which was correlated with both increasing bark pH and an increase in total nitrogen in thalli of H. physodes. The floristic survey from Wales was a repetition of a study eight years earlier (Wolseley & Pryor 1999) now showing a loss of nitrophobes in all sites and the appearance of nitrophiles in pasture sites in 2003. This study demonstrates that lichens on twigs can be used as an early warning system to detect a response to changes in land management and nitrogen deposition.

Type
Research Article
Copyright
Copyright © British Lichen Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alstrup, V., Svane, S. & Søchting, S. (2004) Additions to the lichen flora of Denmark VI. Graphis Scripta 15: 4550.Google Scholar
Arup, U., Ekman, S. L. L. & Mattsson, J. E. (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25: 6171.CrossRefGoogle Scholar
Asman, W. A. H. (1998) Factors influencing local dry deposition of gases with special reference to ammonia. Atmospheric Environment 32: 415421.CrossRefGoogle Scholar
Asman, W. A. H., Sutton, M. A. & Schjørring, J. K. (1997) Ammonia: emmision, atmospheric transport and deposition. New Phytologist 139: 2748.CrossRefGoogle Scholar
Bak, J., Tybirk, K., Gundersen, P., Jensen, J. P., Conley, D. J. & Hertel, O. (1999) Natur- og miljøeffekter af ammoniak. Danmarks JordbrugsForskning. Ammoniakfordampning redegørelse 3. [In Danish].Google Scholar
Barkman, J. J. (1958) Phytosociology and Ecology of Cryptogamic Epiphytes. Assen: van Gorcum.Google Scholar
Berthelsen, K., Olsen, H. & Søchting, U. (2008) Indicator values for lichens on Quercus as a tool to monitor ammonia pollution in Denmark. Sauteria 15: 5977.Google Scholar
Blockeel, T. L. & Long, D. G. (1998) A Check-list and Census Catalogue of British and Irish Bryophytes. Cardiff: British Bryological Society.Google Scholar
Bruteig, I. E. (1993) The epiphytic lichen Hypogymnia physodes as a biomonitor of atmospheric nitrogen and sulphur deposition in Norway. Environmental Monitoring and Assessment 26: 2747.CrossRefGoogle ScholarPubMed
Coppins, A. M. & Coppins, B. J. (2002) Indices of Ecological Continuity for Woodland Epiphytic Lichen Habitats in the British Isles. London: British Lichen Society.Google Scholar
Coppins, B. J. (2002) Checklist of Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Davies, L., Bates, J. W., Bell, J. N. B., James, P. W. & Purvis, W. O. (2007) Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environmental Pollution 146: 299310.CrossRefGoogle Scholar
Degelius, G. (1978) Further studies on the epiphytic vegetation on twigs. Botanica Gothoburgensia 7: 158.Google Scholar
Esseen, P. A. & Renhorn, K. E. (1998) Edge effects on an epiphytic lichen in fragmented forests. Conservation Biology 12: 13071317.CrossRefGoogle Scholar
Fowler, D., Coyle, M., ApSimon, H. M., Ashmore, M. A., Bareham, S. A., Batterbee, R. W., Derwent, R. G., Erisman, J.-W., Goodwin, J., Grennfelt, P., Hornung, M., Irwin, J., Jenkins, A., Metcalfe, S. E., Ormerod, S. J., Reynolds, B. & Woodin, S. (2001) Transboundry Air Pollution: Acidification, Eutrophication and Ground-level Ozone in UK. NEGTAP report (National Expert Group on Transboundary Air Pollution). Edinburgh: Centre for Ecology and Hydrology. http://www.nbu.ac.uk/negtap/Google Scholar
Frati, L., Santoni, S., Nicolardi, V., Gaggi, C., Brunialti, G., Guttova, A., Gaudino, S., Pati, A., Pirintsos, S. A & Loppi, S. (2007) Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm. Environmental Pollution 146: 311316.CrossRefGoogle ScholarPubMed
Gaio-Oliveira, G., Dahlman, L., Palmqvist, K., Martins-Loucao, M. A. & Maguas, C. (2005) Nitrogen uptake in relation to excess supply and its effects on the lichens Evernia prunastri (L.) Ach. and Xanthoria parietina (L.) Th. Fr.. Planta 220: 794803.CrossRefGoogle Scholar
Gombert, S., Asta, J. & Seaward, M. R. D. (2003) Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environmental Pollution 123: 281290.CrossRefGoogle Scholar
Hawksworth, D. L. & Rose, F. (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227: 145148.CrossRefGoogle ScholarPubMed
Heidam, N. Z. (2000) The Background Air Quality in Denmark 1978–1997. Denmark: National Environmental Research Institute. [In Danish].Google Scholar
Hilmo, O. & Holien, H. (2002) Epiphytic lichen response to the edge environment in Boreal Picea abies Forest in Central Norway. Bryologist 105: 4856.CrossRefGoogle Scholar
Hilmo, O., Holien, H. & Hytteborn, H. (2005) Logging strategy influences colonization of common chlorolichens on branches of Picea abies. Ecological Applications. 15: 983996.CrossRefGoogle Scholar
James, P. W., Hawksworth, D. L. & Rose, F. (1977) Lichen communities in the British Isles: a preliminary conspectus. In Lichen Ecology (Seaward, M. R. D., ed.): 195413. London: Academic Press.Google Scholar
Kermit, T. & Gauslaa, Y. (2001) The vertical gradient of bark pH of twigs and macrolichens in a Picea abies canopy not affected by acid rain. Lichenologist 33: 353359.CrossRefGoogle Scholar
Larsen, R. S. & Søchting, U. (2002 a) Nitrogen impact on epiphytic lichens in an ancient oak forest in Denmark. In Abstracts of the 7th International Mycological Congress1–17 August 2002Oslo, Norway p 163.Google Scholar
Larsen, R. S. & Søchting, U. (2002 b) Zamenhofia hibernica new to Scandinavia. Graphis Scritpa 13: 1316.Google Scholar
Larsen, R. S. & Søchting, U. (2003) Ramonia chrysophaea new to Denmark. Graphis Scripta 14: 79.Google Scholar
Larsen, R. S., Bell, J. N. B., James, P. W., Chimonides, P. J., Rumsey, F. J., Tremper, A. & Purvis, O. W. (2007) Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environmental Pollution 146: 332340.CrossRefGoogle ScholarPubMed
Leco (2007) http://www.leco.com/resources/application_note_subs/pdf/organic/-036.pdfGoogle Scholar
Nimis, P. L. & Martellos, S. (2008) ITALIC – The Information System on Italian Lichens. Version 4.0. University of Trieste, Department of Biology, IN4.0/1 (http://dbiodbs.univ.trieste.it/).Google Scholar
Orange, A. James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Pedersen, I. (1980) Epiphytic lichen vegetation in an oak wood, Kaas Skov. Botanisk Tidsskrift 75: 105120.Google Scholar
PRIMER 6 (2007) http://web.pml.ac.uk/primer/primer6.htmGoogle Scholar
Rose, F. (1975) The vegetation and flora of Tycanol wood. Nature in Wales 14: 178185.Google Scholar
Rose, F. (1992) Temperate forest management: its effects on bryophyte and lichen floras and habitats. In Bryophytes and Lichens in a Changing Environment. (Bates, J. W. & Farmer, A. M., eds): 211233. Oxford: Clarendon Press.CrossRefGoogle Scholar
Seaward, M. R. D. & Coppins, B. J. (2004) Lichens and hypertrophication. Bibliotheca Lichenologica 88: 561572.Google Scholar
Sparrius, L. B. (2007) Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of The Netherlands. Environmental Pollution, 146: 375379.CrossRefGoogle Scholar
Stone, D. F. (1989) Epiphyte succession on Quercus garryana branches in the Willamette Valley of Western Oregon. Bryologist 92: 8194.CrossRefGoogle Scholar
Sutton, M. A., Leith, I. H., Pitcairn, C. E. H., van Dijk, N., Tang, Y. S., Sheppard, L., Dragosits, U., Fowler, D., Wolseley, P. A. & James, P. (2004a) Exposure of ecosystems to atmospheric ammonia in the UK and the development of practical bioindicator methods. In Lichens in a Changing Pollution Environment (Lambley, P. & Wolseley, P. A., eds). English Nature Research report no 525: 5162. Peterborough: English Nature.Google Scholar
Sutton, M. A., Pitcairn, C. E. R., Leith, I. D., van Dijk, N., Tang, Y. S., Skiba, U., Smart, S., Mitchell, R., Wolseley, P., James, P., Purvis, W. & Fowler, D. (2004b) Bioindicator and Biomonitoring Methods for Assessing the Effects of Atmospheric Nitrogen on Statutory Nature Conservation Sites. (Sutton, M. A., Pitcairn, C. E. R. & Whitfield, C. P., eds). JNCC Report No: 356, Peterborough: Joint Nature Conservation Committee.Google Scholar
Sutton, M. A., Wolseley, P. A., Leith, I. D., van Dijk, N., Tang, Y. S., James, P. W., Theobald, M. R. & Whitfield, C.(2008) Estimation of the ammonia critical level for epiphytic lichens based on observations at farm, landscape and national scales. In Atmospheric Ammonia – Detecting Emission Changes and Environmental Impacts – Results of an Expert Workshop under the Convention on Long-range Transboundary Air Pollution. (Sutton, M., Reis, S. & Baker, S., eds): 7186. Heidelberg: Springer-Verlag.Google Scholar
Søchting, U. (1995) Lichens as monitors of nitrogen deposition. Cryptogamic Botany 5: 264269.Google Scholar
Søchting, U. & Alstrup, V. (2007) Danish Lichen Checklist. Ver. 2. www.bi.ku.dk/lichens/dkchecklist/ ISBN 87-987317-5-0Google Scholar
Søchting, U., Alstrup, V., Kocourková, J., Vondrak, J. & Larsen, R. S.(2007) Addition to the lichen and lichenicolous flora of Denmark VII. Graphis Scripta 19: 4047.Google Scholar
van Dobben, H. F. & ter Braak, C. J. F. (1998) Effects of atmospheric NH3 on epiphytic lichens in The Netherlands: the pitfalls of biological monitoring. Atmospheric Environment 32: 551557.CrossRefGoogle Scholar
van Herk, C. M. (1999) Mapping of ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31: 920.CrossRefGoogle Scholar
van Herk, C. M. (2001) Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33: 415441.CrossRefGoogle Scholar
van Herk, C. M., Mathijssen-Spiekman, E. A. M. & de Zwart, D. (2003) Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 35: 347359, 413415.CrossRefGoogle Scholar
Wirth, V. (1992) Zeigerwerte von Flechten. In Zeigerwerte von Pflanzen ni Mitteleuropa Scripta Geobotanica 18 (Ellenberg, H., Weber, H. E., Dull, R., Wirth, V. Werner, W. & Paulissen, D., eds): 215237. Gottingen: Erich Goltze KG.Google Scholar
Wolseley, P. A. & James, P. W. (1994) Tycanol NNR Lichen Monitoring: a Review of Research Between 1979–1992. Report to Countryside Council for Wales Contract no C/10/93. Aberystwyth: Countryside Council for Wales.Google Scholar
Wolseley, P. A. & Pryor, K. V. (1999) The potential of epiphytic twig communities on Quercus petraea in a welsh woodland site (Tycanol) for evaluating environmental changes. Lichenologist 31: 4161.CrossRefGoogle Scholar
Wolseley, P. A., James, P. W., Leith, I., van Dijk, N., Pitcairn, C. & Sutton, M. (2005) Lichen diversity: extensive sites. In Biomonitoring Methods for Assessing the Impacts of Nitrogen Pollution: Refinement and Testing. (Leith, I., van Dijk, N.,, Pitcairn, C. E. R., Wolseley, P. A., Whitfield, C. P. & Sutton, M. A., eds) JNCC report No. 386: 165182. Peterborough: Joint Nature Conservation Committee.Google Scholar
Wolseley, P. A., James, P. W., Theobald, M. R.. & Sutton, M. A. (2006) Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources. Lichenologist 38: 161176.CrossRefGoogle Scholar
Wolseley, P. A., Leith, I. D., van Dijk, N. & Sutton, M. A. (2008) Macrolichens on twigs and trunks as indicators of ammonia concentrations across the UK – a practical method. In Atmospheric Ammonia – Detecting Emission Changes and Environmental Impacts – Results of an Expert Workshop under the Convention on Long-range Transboundary AirPollution. (Sutton, M., Reis, S. & Baker, S., eds): 101108. Heidelberg: Springer-Verlag.Google Scholar
Wolseley, P. A. & Douglass, V. J. (2008) Lichen Monitoring and Site Management for Tycanol National Nature Reserve. Aberystwyth: Countryside Council for Wales.Google Scholar
Woods, R. G. & Coppins, B. J. (2003) A Conservation Evaluation of British Lichens. London: British Lichen Society.Google Scholar