Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T09:15:30.574Z Has data issue: false hasContentIssue false

Species delimitation, bioclimatic range, and conservation status of the threatened lichen Fuscopannaria confusa

Published online by Cambridge University Press:  24 August 2012

Tor CARLSEN
Affiliation:
Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway. Email: [email protected]
Mika BENDIKSBY
Affiliation:
Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway
Tom H. HOFTON
Affiliation:
BioFokus, Gaustadalléen 21, 0349 Oslo, Norway
Sigve REISO
Affiliation:
BioFokus, Gaustadalléen 21, 0349 Oslo, Norway
Vegar BAKKESTUEN
Affiliation:
Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway
Reidar HAUGAN
Affiliation:
Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway
Håvard KAUSERUD
Affiliation:
Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway. Email: [email protected]
Einar TIMDAL
Affiliation:
Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway

Abstract

Fuscopannaria confusa is a rare lichen restricted to very humid localities in boreal forests. Two Fuscopannaria species, F. ahlneri and F. mediterranea, and Parmeliella parvula are morphologically problematic to distinguish from F. confusa. Our aim with the present study was to evaluate the taxonomic status of F. confusa and thereby clarify its conservation status in Norway. By phylogenetic analysis of multi-locus DNA sequences, we show that F. confusa is genetically well distinguished from F. ahlneri,F. mediterranea, and P. parvula. Fuscopannaria confusa should therefore be treated as a separate species. A species distribution modelling analysis indicates that F. confusa has a slightly continental but potentially wide geographic distribution in Norway. However, suitable localities are continuously being destroyed by clear-cut logging and hydroelectric power development. Because of the decline in suitable habitats, F. confusa should be regarded as highly threatened in Norway and listed as EN (endangered) at the national level.

Type
Research Article
Copyright
Copyright © British Lichen Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakkestuen, V., Erikstad, L. & Halvorsen, R. (2008) Step-less models for regional environmental variation in Norway. Journal of Biogeography 35: 19061922.CrossRefGoogle Scholar
Bakkestuen, V., Erikstad, L. & Halvorsen, R. (2009) Klimaendringer og Norges Vegetasjon. Hvordan Påvirkes Vegetasjonsmodeller av Ulike Klimascenarier? Trondheim: Norsk Institutt for Naturforskning (NINA).Google Scholar
Crespo, A. & Lumbsch, H. T. (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1: 167170.CrossRefGoogle ScholarPubMed
Culberson, C. F. (1972) Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method. Journal of Chromatography 72: 113125.CrossRefGoogle ScholarPubMed
Culberson, C. F. & Johnson, A. (1982) Substitution of methyl tert.-butyl ether for diethyl ether in the standardized thin-layer chromatographic method for lichen products. Journal of Chromatography 238: 483487.CrossRefGoogle Scholar
Ekman, S. & Jørgensen, P. M. (2002) Towards a molecular phylogeny for the lichen family Pannariaceae (Lecanorales, Ascomycota). Canadian Journal of Botany-Revue Canadienne De Botanique 80: 625634.Google Scholar
Elith, J. & Graham, C. H. (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32: 6677.CrossRefGoogle Scholar
Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129151.Google Scholar
Goloboff, P. A., Farris, J. S. & Nixon, K. C. (2008) TNT, a free program for phylogenetic analysis. Cladistics – International Journal of the Willi Hennig Society 24: 774786.CrossRefGoogle Scholar
Guisan, A., Graham, C. H., Elith, J. & Huettmann, F. (2007) Sensitivity of predictive species distribution models to change in grain size. Diversity & Distributions 13: 332340.CrossRefGoogle Scholar
Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 9598.Google Scholar
Hermansson, J. & Kudryatseva, D. (1995) Notes on the lichens of the Pechoro-Ilych Zapovednik, Komi Republic, Russia. Graphis Scripta 7: 6778.Google Scholar
Holien, H. & Tønsberg, T. (1996) Boreal regnskog i Norge – habitatet for trøndelagselementets lavarter. Blyttia 54: 157177.Google Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.CrossRefGoogle ScholarPubMed
James, T. Y. & Vilgalys, R. (2001) Abundance and diversity of Schizophyllum commune spore clouds in the Caribbean detected by selective sampling. Molecular Ecology 10: 471480.CrossRefGoogle ScholarPubMed
Jaynes, E. T. (1957) Information theory and statistical mechanics. Physical Review 106: 620.CrossRefGoogle Scholar
Jørgensen, P. M. (1991) On some Fennoscandian Pannaria species. Annales Botanici Fennici 28: 8791.Google Scholar
Jørgensen, P. M. (2000) Survey of the lichen family Pannariaceae on the American continent, north of Mexico. Bryologist 103: 670704.CrossRefGoogle Scholar
Kålås, J. A., Viken, Å., Henriksen, S. & Skjelseth, S., eds (2010) The 2010 Norwegian Red List for Species. Trondheim: Norwegian Biodiversity Information Centre.Google Scholar
Kroken, S. & Taylor, J. W. (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia . Mycologia 93: 3853.CrossRefGoogle Scholar
Lumbsch, H. T. & Leavitt, S. D. (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Diversity 50: 5972.CrossRefGoogle Scholar
Menlove, J. E. (1974) Thin-layer chromatography for the identification of lichen substances. British Lichen Society Bulletin 34: 35.Google Scholar
Miądlikowska, J., Kauff, F., Hofstetter, V., Fraker, E., Grube, M., Hafellner, J., Reeb, V., Hodkinson, B. P., Kukwa, M., Lucking, R. et al. (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98: 10881103.CrossRefGoogle ScholarPubMed
Murray, M. G. & Thompson, W. F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8: 43214325.CrossRefGoogle ScholarPubMed
Pearce, J. & Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133: 225245.CrossRefGoogle Scholar
Phillips, S. J. & Dudík, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161175.CrossRefGoogle Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231259.Google Scholar
Posada, D. (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.CrossRefGoogle ScholarPubMed
Printzen, C. (2010) Lichen systematics: the role of morphological and molecular data to reconstruct phylogenetic relationships. In Progress in Botany (Lüttge, U., ed.): 233275. Berlin: Springer.Google Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.CrossRefGoogle ScholarPubMed
Scheidegger, C. & Werth, S. (2009) Conservation strategies for lichens: insights from population biology. Fungal Biology Reviews 23: 5566.Google Scholar
Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S. & Fisher, M. C. (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 2132.Google Scholar
Timdal, E. (2011) Norwegian Lichen Database. http://www.nhm.uio.no/botanisk/lav/. Accessed September 2011.Google Scholar
Timdal, E., Bratli, H., Haugan, R., Holien, H. & Tønsberg, T. (2006) Lichens. In 2006 Norwegian Red List (Kålås, J. A., Viken, Å., Bakken, T., eds): 129139. Trondheim: Artsdatabanken.Google Scholar
Timdal, E., Bratli, H., Haugan, R., Holien, H. & Tønsberg, T. (2010) Lichens. In The 2010 Norwegian Red List for Species (Kålås, J. A., Viken, Å., Henriksen, S. & Skjelseth, S., eds): 125137. Trondheim: Norwegian Biodiversity Information Centre.Google Scholar
Vonarburg, C. & Zimmermann, E. (2006) Fuscopannaria confusa (P. M. Jørg.) P. M. Jørg. – Neu für die Schweiz. Meylania 37: 1213.Google Scholar
Wedin, M., Wiklund, E., Jørgensen, P. M. & Ekman, S. (2009) Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Molecular Phylogenetics and Evolution 53: 862871.CrossRefGoogle ScholarPubMed
White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. San Diego: Academic Press.Google Scholar
Wolseley, P. A. (1995) A global perspective on the status of lichens and their conservation. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft 70: 1127.Google Scholar