Hostname: page-component-6587cd75c8-gglxz Total loading time: 0.001 Render date: 2025-04-24T06:10:12.050Z Has data issue: false hasContentIssue false

Red Listing lichenized fungi: best practices and future prospects

Published online by Cambridge University Press:  31 December 2024

Rebecca Yahr*
Affiliation:
Royal Botanic Garden Edinburgh, Edinburgh, EH3 5LR, UK
Jessica L. Allen
Affiliation:
Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
Violeta Atienza
Affiliation:
Departament de Botànica i Geologia, Facultat de Ciencies Biològiques, Campus de Burjassot, Universitat de València, ES-46100 Burjassot, València, Spain
Frank Burgartz
Affiliation:
Biodiversity Integration Knowledge Center, Arizona State University, Tempe, AZ 85287-4108, USA Instituto Nacional de Biodiversidad (INABIO), Quito, Ecuador Charles Darwin Foundation for the Galapagos Islands (CDF), Puerto Ayora, Ecuador
Nathan Chrismas
Affiliation:
Royal Botanic Garden Edinburgh, Edinburgh, EH3 5LR, UK
Manuela Dal Forno
Affiliation:
Botanical Research Institute of Texas, Fort Worth Botanic Garden, Fort Worth, TX 76107, USA
Polina Degtjarenko
Affiliation:
University of Tartu, Institute of Ecology and Earth Sciences, 50409 Tartu, Estonia Daugavpils University, Institute of Life Sciences and Technology, 5401 Daugavpils, Latvia
Yoshihito Ohmura
Affiliation:
Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki 3050005, Japan
Sergio Pérez-Ortega
Affiliation:
Real Jardín Botánico, Mycology Department, 28014 Madrid, Spain
Tiina Randlane
Affiliation:
University of Tartu, Institute of Ecology and Earth Sciences, 50409 Tartu, Estonia
Rikke Reese Næsborg
Affiliation:
Department of Conservation & Research, Santa Barbara Botanic Garden, Santa Barbara, CA 93105, USA
Diego Simijaca-Salcedo
Affiliation:
Grupo Colombiano de Liquenología (GCOL), Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Torre de Laboratorios, Herbario, Bogotá, Colombia
Gesa von Hirschheydt
Affiliation:
Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Frances Anderson
Affiliation:
Museum of Natural History, Halifax, Nova Scotia, B3H 3A6, Canada
Andre Aptroot
Affiliation:
Laboratório de Botânica/ Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, CEP 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
Eli Balderas
Affiliation:
Biological Sciences Department, California Polytechnic State University San Luis Obispo, San Luis Obispo, CA 93407, USA
Niles Borukhiyah
Affiliation:
Biodiversity Integration Knowledge Center, Arizona State University, Tempe, AZ 85287-4108, USA
Amanda M. Chandler
Affiliation:
Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA
Maria Chesa Marro
Affiliation:
Grup d'Estudi dels Briòfits i Líquens dels Països Catalans, Institució Catalana d'Història Natural, 08001 Barcelona, Spain
Pradeep K. Divakar
Affiliation:
Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
Renato Andrés García
Affiliation:
Laboratorio de Biodiversidad y Genética Ambiental (BioGeA), Universidad Nacional de Avellaneda, CP 1870, Argentina
Maria de los Ángeles Herrera-Campos
Affiliation:
Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, C. P. 04510, Cd de México, México
Natalie Howe
Affiliation:
Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA
Siljo Joseph
Affiliation:
Forest Botany Department, Forest Ecology and Biodiversity Conservation Division, KSCSTE - Kerala Forest Research Institute, Peechi - 680653, Thrissur, Kerala, India
Elaine M. Larsen
Affiliation:
Department of Biology, Eastern Washington University, WA 99004, USA
James C. Lendemer
Affiliation:
Research and Collections, CEC 3140, The New York State Museum, Albany, NY 12230, USA
R. Troy McMullin
Affiliation:
Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4, Canada
Andrea Michlig
Affiliation:
Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (FaCENA-UNNE), Instituto de Botánica del Nordeste (IBONE, CONICET-UNNE), Corrientes, Argentina
Bibiana Moncada
Affiliation:
Grupo Colombiano de Liquenología (GCOL), Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Torre de Laboratorios, Herbario, Bogotá, Colombia Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Berlin, Germany
Julianna Paulsen
Affiliation:
Department of Biology, Eastern Washington University, WA 99004, USA
Francibelk Roa-García
Affiliation:
University of Concepción, Faculty of Natural and Oceanographic Sciences (FCNO), 4070409 Concepción, Chile
Roger Rosentreter
Affiliation:
Biology Department, Boise State University, Boise, ID 83702, USA
Christoph Scheidegger
Affiliation:
Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Laurens B. Sparrius
Affiliation:
Dutch Bryological and Lichenological Society, 3511 BN Utrecht, Netherlands
Daphne Fisher Stone
Affiliation:
Oregon State University Herbarium, Cordley Hall, Corvallis, OR 97331, USA
*
Corresponding author: Rebecca Yahr; Email: [email protected]

Abstract

According to International Union for the Conservation of Nature (IUCN) guidelines, all species must be assessed against all criteria during the Red Listing process. For organismal groups that are diverse and understudied, assessors face considerable challenges in assembling evidence due to difficulty in applying definitions of key terms used in the guidelines. Challenges also arise because of uncertainty in population sizes (Criteria A, C, D) and distributions (Criteria A2/3/4c, B). Lichens, which are often small, difficult to identify, or overlooked during biodiversity inventories, are one such group for which specific difficulties arise in applying Red List criteria. Here, we offer approaches and examples that address challenges in completing Red List assessments for lichens in a rapidly changing arena of data availability and analysis strategies. While assessors still contend with far from perfect information about individual species, we propose practical solutions for completing robust assessments given the currently available knowledge of individual lichen life-histories.

Type
Review Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of the British Lichen Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Communicating authors who contributed equally to the work

References

Abarenkov, K, Tedersoo, L, Nilsson, RH, Vellak, K, Saar, I, Veldre, V, Parmasto, E, Prous, M, Aan, A, Ots, M, et al. (2010) PlutoF – a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evolutionary Bioinformatics Online 6, 189196.Google Scholar
Abas, A (2021) A systematic review on biomonitoring using lichen as the biological indicator: a decade of practices, progress and challenges. Ecological Indicators 121, 107197.CrossRefGoogle Scholar
Aguilar-Garavito, M, Cortina-Segarra, J, Matoma, M and Barrera-Cataño, JI (2023) Postfire resprouting and recruitment of Quercus humboldtii in the Iguaque Mountains (Colombia). Forest Ecology and Management 537, 120937.CrossRefGoogle Scholar
Aguirre-Liguori, J, Luna-Sánchez, J, Gasca-Pineda, J and Eguiarte, L (2020) Evaluation of the minimum sampling design for population genomic and microsatellite studies: an analysis based on wild maize. Frontiers in Genetics 11, 870.CrossRefGoogle ScholarPubMed
Allen, JL and Lendemer, JC (2016) Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation 25, 555568.CrossRefGoogle Scholar
Allen, JL and Scheidegger, C (2022) Co-occurring Lobaria pulmonaria and Ricasolia quercizans share green algal photobionts: consequences for conservation. Bryologist 125, 219221.CrossRefGoogle Scholar
Allen, JL, McKenzie, SK, Sleith, RS and Alter, SE (2018) First genome-wide analysis of the endangered, endemic lichen Cetradonia linearis reveals isolation by distance and strong population structure. American Journal of Botany 105, 15561567.CrossRefGoogle ScholarPubMed
Allen, J, Tripp, E and Lendemer, J (2020) Arthonia kermesina (amended version of 2019 assessment). The IUCN Red List of Threatened Species 2020: e.T70385721A175189474. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2020-2.RLTS.T70385721A175189474.en. [Accessed 23 April 2024].CrossRefGoogle Scholar
Alonso-García, M, Grewe, F, Payette, S and Carlos, J (2021) Population genomics of a reindeer lichen species from North American lichen woodlands. American Journal of Botany 108, 159171.CrossRefGoogle ScholarPubMed
Aptroot, A (2021) The four lichen floras of Brazil. Program and Abstract Book for the International Association for Lichenology 9th Symposium (IAL9), 1–6 August 2021, Brazil, p. 53.Google Scholar
Armstrong, R and Bradwell, T (2010) Growth of crustose lichens: a review. Geografiska Annaler: Series A, Physical Geography 92, 317.CrossRefGoogle Scholar
Armstrong, R and Bradwell, T (2011) Growth of foliose lichens: a review. Symbiosis 53, 116.CrossRefGoogle Scholar
Asplund, J and Wardle, DA (2017) How lichens impact on terrestrial community and ecosystem properties. Biological Reviews 92, 17201738.CrossRefGoogle ScholarPubMed
Asplund, J, Gauslaa, Y and Merinero, S (2018) Low synthesis of secondary compounds in the lichen Lobaria pulmonaria infected by the lichenicolous fungus Plectocarpon lichenum. New Phytologist 217, 13971400.CrossRefGoogle ScholarPubMed
Bachman, SP, Nic Lughadha, EM and Rivers, MC (2018) Quantifying progress toward a conservation assessment for all plants. Conservation Biology 32, 516524.CrossRefGoogle Scholar
Bachman, SP, Field, R, Reader, T, Raimondo, D, Donaldson, J, Schatz, GE and Nic, Lughadha E (2019) Progress, challenges and opportunities for Red Listing. Biological Conservation 234, 4555.CrossRefGoogle Scholar
Belinchón, R, Yahr, R and Ellis, CJ (2014) Interactions among species with contrasting dispersal modes explain distributions for epiphytic lichens. Ecography 38, 762768.CrossRefGoogle Scholar
Bendiksby, M, Mazzoni, S, Jørgensen, MH, Halvorsen, R and Holien, H (2014) Combining genetic analyses of archived specimens with distribution modelling to explain the anomalous distribution of the rare lichen Staurolemma omphalarioides: long-distance dispersal or vicariance? Journal of Biogeography 41, 20202031.CrossRefGoogle Scholar
Bergamini, A, Bisang, I, Hodgetts, N, Lockhart, N, van Roy, J and Hallingbäck, T (2019) Recommendations for the use of critical terms when applying IUCN red-listing criteria to bryophytes. Lindbergia 2019, 16.Google Scholar
Berlinches de Gea, A, Verdú, M, Villar-dePablo, M and Pérez-Ortega, S (2024) The combined effects of habitat fragmentation and life history traits on specialisation in lichen symbioses. Journal of Ecology 112, 200216.CrossRefGoogle Scholar
Bhatti, NR (2021) Developing statistical monitoring tools for data-deficient lichen species. Ph.D. thesis, University of Aberdeen.Google Scholar
Bird, TJ, Bates, AE, Lefcheck, JS, Hill, NA, Thomson, RJ, Edgar, GJ, Stuart-Smith, RD, Wotherspoon, S, Krkosek, M, Stuart-Smith, JF, et al. (2014) Statistical solutions for error and bias in global citizen science datasets. Biological Conservation 173, 144154.CrossRefGoogle Scholar
Britton, AJ, Mitchell, RJ, Jacqueline, M and Genney, DR (2014) Developing monitoring protocols for cost-effective surveillance of lichens. Lichenologist 46, 471482.CrossRefGoogle Scholar
Brunialti, G, Frati, L, Cristofolini, F, Chiarucci, A, Giordani, P, Loppi, S, Benesperi, R, Cristofori, A, Critelli, P, Di Capua, E, et al. (2012) Can we compare lichen diversity data? A test with skilled teams. Ecological Indicators 23, 509516.CrossRefGoogle Scholar
Cáceres, MES, Lücking, R and Rambold, G (2008) Efficiency of sampling methods for accurate estimation of species richness of corticolous microlichens in the Atlantic rainforest of northeastern Brazil. Biodiversity and Conservation 17, 12851301.CrossRefGoogle Scholar
Caruso, A, Thor, G and Snäll, T (2010) Colonization–extinction dynamics of epixylic lichens along a decay gradient in a dynamic landscape. Oikos 119, 19471953.CrossRefGoogle Scholar
Casanovas, P, Lynch, HJ and Fagan, WF (2014) Using citizen science to estimate lichen diversity. Biological Conservation 171, 18.CrossRefGoogle Scholar
Casselman, KD (2001) Lichen Dyes: The New Source Book. Mineola, New York: Dover Publications, Inc.Google Scholar
CEIBA (2019) Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (2019). Especies de Líquenes Priorizadas en Colombia. [WWW document] URL http://i2d.humboldt.org.co/ceiba/resource.do?r=rrbb_liquenes_2019Google Scholar
Chen, G, Kéry, M, Zhang, J and Ma, K (2009) Factors affecting detection probability in plant distribution studies. Journal of Ecology 97, 13831389.CrossRefGoogle Scholar
Consortium of Lichen Herbaria (2023) Consortium of Lichen Herbaria – building a Global Consortium of Bryophytes and Lichens as keystones of cryptobiotic communities. [WWW resource] URL https://lichenportal.org/. [Accessed 5 March 2023].Google Scholar
Corsie, EI, Harrold, P and Yahr, R (2019) No combination of morphological, ecological or chemical characters can reliably diagnose species in the Parmelia saxatilis aggregate in Scotland. Lichenologist 51, 107121.CrossRefGoogle Scholar
Crawford, SD (2019) Lichens used in traditional medicine. In Ranković, B (ed.), Lichen Secondary Metabolites. Cham, Switzerland: Springer.Google Scholar
Crespo, A and Lumbsch, HT (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1, 167170.CrossRefGoogle ScholarPubMed
Crespo, A, Molina, MC, Blanco, O, Schroeter, B, Sancho, LG and Hawksworth, DL (2002) rDNA ITS and β-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycological Research 106, 788795.CrossRefGoogle Scholar
Crespo, A, Rico, VJ, Garrido, E, Lumbsch, HT and Divakar, PK (2020) A revision of species of the Parmelia saxatilis complex in the Iberian Peninsula with the description of P. rojoi, a new potentially relict species. Lichenologist 52, 365376.Google Scholar
Dahlberg, A and Mueller, GM (2011) Applying IUCN red-listing criteria for assessing and reporting on the conservation status of fungal species. Fungal Ecology 4, 147162.CrossRefGoogle Scholar
Forno M, Dal, Kaminsky, L and Lücking, R (2021) Cora timucua. In The IUCN Red List of Threatened Species. IUCN. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2021-1.RLTS.T175711802A175712343.en. [Accessed 8 June 2023].CrossRefGoogle Scholar
Dal Forno, M, Lawrey, JD, Moncada, B, Bungartz, F, Grube, M, Schuettpelz, E and Lücking, R (2022) DNA barcoding of fresh and historical collections of lichen-forming basidiomycetes in the genera Cora and Corella (Agaricales: Hygrophoraceae): a success story? Diversity 14, 284.CrossRefGoogle Scholar
Dauby, G, Stévart, T, Droissart, V, Cosiaux, A, Deblauwe, V, Simo-Droissart, M, Sosef, MSM, Lowry, PP, Schatz, GE and Gereau, RE (2017) ConR: an R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecology and Evolution 7, 1129211303.CrossRefGoogle Scholar
Deduke, C, Booth, T and Piercey-Normore, MD (2014) Lichen fecundity on the Precambrian Shield: an alternative life history strategy approach. Botany 92, 723735.CrossRefGoogle Scholar
Degtjarenko, P, Kaupuža, R, Motiejūnaitė, J, Randlane, T and Moisejevs, R (2024) Toward the first Red List of Latvian lichens according to the IUCN criteria. Plant Biosystems 158, 1244–1252.CrossRefGoogle Scholar
Denchev, CM and Denchev, TT (2019 a) Anthracoidea andina. In The IUCN Red List of Threatened Species. IUCN. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T73643293A73643851.en. [Accessed 8 June 2023].Google Scholar
Denchev, CM and Denchev, TT (2019 b) Anthracoidea ortegae. In The IUCN Red List of Threatened Species. IUCN. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T73661673A73662018.en. [Accessed 8 June 2023].Google Scholar
Denchev, TT and Denchev, CM (2022) Sporisorium elionuri-tristis. In The IUCN Red List of Threatened Species. IUCN. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2022-2.RLTS.T73743179A73743188.en. [Accessed 8 June 2023].Google Scholar
Devkota, S, Chaudhary, RP, Werth, S and Scheidegger, C (2017) Indigenous knowledge and use of lichens by the lichenophilic communities of the Nepal Himalaya. Journal of Ethnobiology and Ethnomedicine 13, 110.CrossRefGoogle ScholarPubMed
Devkota, S, Chaudhary, RP, Werth, S and Scheidegger, C (2019) Genetic diversity and structure of the epiphytic foliose lichen Lobaria pindarensis in the Himalayas depends on elevation. Fungal Ecology 41, 245255.CrossRefGoogle Scholar
Diederich, P, Lawrey, JD and Ertz, D (2018) The 2018 classification and checklist of lichenicolous fungi, with 2000 non-lichenized, obligately lichenicolous taxa. Bryologist 121, 340425.CrossRefGoogle Scholar
Dorey, JE, Lendemer, JC and Naczi, RFC (2017) Patterns of biodiverse, understudied groups do not mirror those of the surrogate groups that set conservation priorities: a case study from the Mid-Atlantic Coastal Plain of eastern North America. Biodiversity and Conservation 27, 3151.CrossRefGoogle Scholar
During, HJ (1992) Ecological classification of bryophytes and lichens. In Bates, JW and Farmer, HM (eds), Bryophytes and Lichens in a Changing Environment. Oxford: Clarendon Press, pp. 131.Google Scholar
Eaton, S (2018) Achieving landscape-scale conservation for Scotland's rainforest epiphytes. Ph.D. thesis, University of Glasgow.Google Scholar
Ellis, CJ (2013) A risk-based model of climate change threat: hazard, exposure, and vulnerability in the ecology of lichen epiphytes. Botany 91, 111.CrossRefGoogle Scholar
Ellis, CJ and Coppins, BJ (2019) Five decades of decline for old-growth indicator lichens in Scotland. Edinburgh Journal of Botany 76, 319331.CrossRefGoogle Scholar
Ellis, CJ, Coppins, BJ, Dawson, TP and Seaward, MRD (2007) Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biological Conservation 140, 217235.CrossRefGoogle Scholar
Ellis, CJ, Steadman, CE, Vieno, M, Chatterjee, S, Jones, MR, Negi, S, Pandey, BP, Rai, H, Tshering, D, Weerakoon, G, et al. (2022) Estimating nitrogen risk to Himalayan forests using thresholds for lichen bioindicators. Biological Conservation 265, 109401.CrossRefGoogle Scholar
Esslinger, TL (2021) A cumulative checklist for the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada, version 24. Opuscula Philolichenum 20, 100394.CrossRefGoogle Scholar
Fedrowitz, K, Kaasalainen, U and Rikkinen, J (2011) Genotype variability of Nostoc symbionts associated with three epiphytic Nephroma species in a boreal forest landscape. Bryologist 114, 220230.CrossRefGoogle Scholar
Follmann, G and Mies, B (1988) Contributions to the lichen flora and lichen vegetation of the Cape Verde Islands. VIII. New records of lichen species already known from other Macaronesian archipelagos. Journal of the Hattori Botanical Laboratory 65, 311322.Google Scholar
Gärdenfors, U, Hilton-Taylor, C, Mace, GM and Rodriguez, JP (2001) The application of IUCN Red List criteria at regional levels. Conservation Biology 15, 12061212.CrossRefGoogle Scholar
Garrard, GE, Bekessy, SA, McCarthy, MA and Wintle, BA (2008) When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology 33, 986998.CrossRefGoogle Scholar
Garrard, GE, McCarthy, MA, Williams, NSG, Bekessy, SA and Wintle, BA (2013) A general model of detectability using species traits. Methods in Ecology and Evolution 4, 4552.CrossRefGoogle Scholar
Garrido-Benavent, I, Molins, A and Barreno, E (2022) Genetic variation in the symbiont partners in the endangered macrolichen Seirophora villosa (Teloschistaceae: Ascomycota). Botanical Journal of the Linnean Society 199, 816829.CrossRefGoogle Scholar
GBIF (2024) What is GBIF? In The Global Biodiversity Information Facility [WWW resource] URL https://www.gbif.org/what-is-gbif. [Accessed 27 June 2024].Google Scholar
Geml, J, Kauff, F, Brochmann, C and Taylor, DL (2010) Surviving climate changes: high genetic diversity and transoceanic gene flow in two arctic-alpine lichens, Flavocetraria cucullata and F. nivalis (Parmeliaceae, Ascomycota). Journal of Biogeography 37, 15291542.CrossRefGoogle Scholar
Gencat (2023) Resolució ACC/3929/2023. Catàleg de Flora Amenaçada. Diari Oficial de la Generalitat de Catalunya 9047, 124.Google Scholar
Gjerde, I, Blom, HH, Lindblom, L, Sætersdal, M and Schei, FH (2012) Community assembly in epiphytic lichens in early stages of colonization. Ecology 93, 749759.CrossRefGoogle ScholarPubMed
Goga, M, Elečko, J, Marcinčinová, M, Ručová, D, Bačkorová, M and Bačkor, M (2020) Lichen metabolites: an overview of some secondary metabolites and their biological potential. In Mérillon, JM and Ramawat, K (eds), Co-Evolution of Secondary Metabolites. Cham, Switzerland: Springer, pp. 175209.CrossRefGoogle Scholar
Gómez-Bolea, A, Lluent, A, Garrido-Benavent, I, Paz-Bermúdez, G, Ravera, S, Pérez Vargas, I and Chesa, M (2023 ) exTRICATe project. Building Iberian conservation networks and the global Red List assessment of the regionally vulnerable lichen Lethariella intricata. URL https://applied-lichenology.com/en/iucn-project-lethariella-intricata/ [Accessed 29 May 2024].Google Scholar
Goudie, RI, Scheidegger, C, Hanel, C, Munier, A and Conway, E (2011) New population models help explain declines in the globally rare boreal felt lichen Erioderma pedicellatum in Newfoundland. Endangered Species Research 13, 181189.CrossRefGoogle Scholar
Green, TGA, Brabyn, L, Beard, C and Sancho, LG (2012) Extremely low lichen growth rates in Taylor Valley, Dry Valleys, continental Antarctica. Polar Biology 35, 535541.CrossRefGoogle Scholar
Gueidan, C and Li, L (2022) A long-read amplicon approach to scaling up the metabarcoding of lichen herbarium specimens. MycoKeys 86, 195212.CrossRefGoogle ScholarPubMed
Gueidan, C, Elix, JA, McCarthy, PM, Roux, C, Mallen-Cooper, M and Kantvilas, G (2019) PacBio amplicon sequencing for metabarcoding of mixed DNA samples from lichen herbarium specimens. MycoKeys 53, 7391.CrossRefGoogle ScholarPubMed
Guillera-Arroita, G (2017) Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography 40, 281295.CrossRefGoogle Scholar
Hawksworth, DL and Lücking, R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum 5, 117.CrossRefGoogle ScholarPubMed
Heinrich, S, Ross, JV, Gray, TNE, Delean, S, Marx, N and Cassey, P (2020) Plight of the commons: 17 years of wildlife trafficking in Cambodia. Biological Conservation 241, 108379.CrossRefGoogle Scholar
Herrera-Campos, MA, Parrinello, C and Bungartz, F (2020) Mobergia calculiformis. In The IUCN Red List of Threatened Species. IUCN. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T175709748A175710672.en. [Accessed 8 June 2023].Google Scholar
Honegger, R (2006) Water relations in lichens. In Gadd, G, Watkinson, SC and Dyer, P (eds), Fungi in the Environment. Cambridge: Cambridge University Press, pp. 185200.Google Scholar
ICHN (Institució Catalana d'Història Natural) (2010) Fongs, líquens i briòfits que requereixen mesures de conservació a Catalunya. Barcelona: Institució Catalana d'Història Natural. [WWW document] URL http://ichn.iec.cat/pdf/FLBprot.pdfGoogle Scholar
Isaac, NJB and Pocock, MJO (2015) Bias and information in biological records. Biological Journal of the Linnean Society 115, 522531.CrossRefGoogle Scholar
IUCN (2023) Summary Statistics, IUCN Red List update 2023-1. URL https://www.iucnredlist.org/resources/summary-statistics. [Accessed 29 January 2024].Google Scholar
IUCN Standards and Petitions Subcommittee (2024) Guidelines for Using the IUCN Red List Categories and Criteria (Version 15.1). Gland, Switzerland: IUCN. URL https://nc.iucnredlist.org/redlist/content/attachment_files/RedListGuidelines.pdf. [Accessed 8 June 2023].Google Scholar
Jahns, HM (1993) Culture experiments with lichens. Plant Systematics and Evolution 187, 145174.CrossRefGoogle Scholar
Jahns, HM and Ott, S (1997) Life strategies in lichens – some general considerations. Bibliotheca Lichenologica 67, 4967.Google Scholar
Johansson, V, Ranius, T and Snäll, T (2012) Epiphyte metapopulation dynamics are explained by species traits, connectivity, and patch dynamics. Ecology 93, 235241.CrossRefGoogle ScholarPubMed
Jüriado, I, Karu, L and Liira, J (2012) Habitat conditions and host tree properties affect the occurrence, abundance and fertility of the endangered lichen Lobaria pulmonaria in wooded meadows of Estonia. Lichenologist 44, 263275.CrossRefGoogle Scholar
Kachanovski, IM, Nikiforov, ME and Parfenov, VI (2015) Krasnaya kniga Respubliki Belarus. Rasteniya: redkiye i nakhodiashchiyesia pod ugrozoi ischeznoveniya vidi dikorastushchikh rastenii [Red Book of the Republic of Belarus: rare and endangered species of wild plants plants]. Minsk: Belaruskaia Entsyklapedyia imia Petrusia Brouki.Google Scholar
Kershaw, KA (1985) Physiological Ecology of Lichens. Cambridge: Cambridge University Press.Google Scholar
Kéry, M (2002) Inferring the absence of a species: a case study of snakes. Journal of Wildlife Management 66, 330338.CrossRefGoogle Scholar
Kéry, M (2004) Extinction rate estimates for plant populations in revisitation studies: importance of detectability. Conservation Biology 18, 570574.CrossRefGoogle Scholar
Keuler, R, Garretson, A, Saunders, T, Erickson, RJ, St Andre, N, Grewe, F, Smith, H, Lumbsch, HT, Huang, JP, St Clair, LL, et al. (2020) Genome-scale data reveal the role of hybridization in lichen-forming fungi. Scientific Reports 10, 1497.CrossRefGoogle ScholarPubMed
Kistenich, S, Halvorsen, R, Schrøder-Nielsen, A, Thorbek, L, Timdal, E and Bendiksby, M (2019) DNA sequencing historical lichen specimens. Frontiers in Ecology and Evolution 7, 5.CrossRefGoogle Scholar
Kosecka, M, Kukwa, M, Jabłońska, A, Flakus, A, Rodriguez-Flakus, P, Ptach, Ł and Guzow-Krzemińska, B (2022) Phylogeny and ecology of Trebouxia photobionts from Bolivian lichens. Frontiers in Microbiology 13, 779784.CrossRefGoogle ScholarPubMed
Kuussaari, M, Bommarco, R, Heikkinen, RK, Helm, A, Krauss, J, Lindborg, R, Öckinger, E, Pärtel, M, Pino, J, Roda, F, et al. (2009) Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution 24, 564571.CrossRefGoogle ScholarPubMed
Lagostina, E, Andreev, M, Dal Grande, F, Grewe, F, Lorenz, A, Lumbsch, HT, Rozzi, R, Ruprecht, U, Sancho, LG, Søchting, U, et al. (2021) Effects of dispersal strategy and migration history on genetic diversity and population structure of Antarctic lichens. Journal of Biogeography 48, 16351653.CrossRefGoogle Scholar
Lättman, H, Brand, A, Hedlund, J, Krikorev, M, Olsson, N, Robeck, A, Rönnmark, F and Mattsson, JE (2009) Generation time estimated to be 25–30 years in Cliostomum corrugatum (Ach.) Fr. Lichenologist 41, 557559.CrossRefGoogle Scholar
Lawrey, JD and Diederich, P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 106, 80120.CrossRefGoogle Scholar
Lendemer, J and Allen, J (2018 a) Acanthothecis leucoxanthoides. In The IUCN Red List of Threatened Species. IUCN. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T80702763A80702766.en. [Accessed 8 June 2023].Google Scholar
Lendemer, J and Allen, J (2018 b) Acanthothecis paucispora. In The IUCN Red List of Threatened Species. IUCN. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T80702772A80702775.en. [Accessed 8 June 2023].Google Scholar
Liška, J and Palice, Z (2010) Červený seznam lišejníků České republiky (verze 1.1). Příroda (Praha) 29, 366.Google Scholar
Lõhmus, P and Lõhmus, A (2009) The importance of representative inventories for lichen conservation assessments: the case of Cladonia norvegica and C. parasitica. Lichenologist 41, 6167.CrossRefGoogle Scholar
Lõhmus, P, Marmor, L, Jüriado, I, Suija, A, Oja, E, Degtjarenko, P and Randlane, T (2019) Red List of Estonian lichens: revision in 2019. Folia Cryptogamica Estonica 56, 6376.CrossRefGoogle Scholar
Lõhmus, P, Degtjarenko, P, Lotman, S, Copoț, O, Rosenvald, R and Lõhmus, A (2023) ‘Ready! Set! Lichen!’: a citizen-science campaign for lichens, against the odds of success. Biodiversity and Conservation 32, 47534765.CrossRefGoogle Scholar
Lücking, R (2001) Lichens on leaves in tropical rainforests: life in a permanently ephemerous environment. Dissertationes Botanicae 346, 4177.Google Scholar
Lücking, R, Dal Forno, M, Sikaroodi, M, Gillevet, PM, Bungartz, F, Moncada, B, Yánez-Ayabaca, A, Chaves, JL, Coca, LF and Lawrey, JD (2014) A single macrolichen constitutes hundreds of unrecognized species. Proceedings of the National Academy of Sciences of the United States of America 111, 1109111096.CrossRefGoogle ScholarPubMed
Lücking, R, Hodkinson, BP and Leavitt, SD (2017) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – approaching one thousand genera. Bryologist 119, 361416.CrossRefGoogle Scholar
Lücking, R, Kaminsky, L, Perlmutter, GB, Lawrey, JD and Dal, Forno M (2020) Cora timucua (Hygrophoraceae), a new and potentially extinct, previously misidentified basidiolichen of Florida inland scrub documented from historical collections. Bryologist 123, 657673.CrossRefGoogle Scholar
Lücking, R, Leavitt, SD and Hawksworth, DL (2021) Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics. Fungal Diversity 109, 99154.CrossRefGoogle Scholar
Lutsak, T, Fernández-Mendoza, F, Kirika, P, Wondafrash, M and Printzen, C (2016) Mycobiont-photobiont interactions of the lichen Cetraria aculeata in high alpine regions of East Africa and South America. Symbiosis 68, 2537.CrossRefGoogle Scholar
MADS (Ministerio de Medio Ambiente y Desarrollo Sostenible) (2019) Agreement 470 (19-098) IAVH-MADS-ICN. URL https://www.andi.com.co/Uploads/Memoria%20Justificativa%20Act%20213.pdfGoogle Scholar
Mair, L and Ruete, A (2016) Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE 11, e0147796.CrossRefGoogle ScholarPubMed
Manzitto-Tripp, EA, Lendemer, JC and McCain, CM (2022) Most lichens are rare, and degree of rarity is mediated by lichen traits and biotic partners. Diversity and Distributions 28, 18101819.CrossRefGoogle Scholar
Mark, K, Randlane, T, Thor, G, Hur, JS, Obermayer, W and Saag, A (2019) Lichen chemistry is concordant with multilocus gene genealogy in the genus Cetrelia (Parmeliaceae, Ascomycota). Fungal Biology 132, 125139.CrossRefGoogle Scholar
McCune, B, Dey, JP, Peck, JE, Cassell, D, Heiman, K, Will-Wolf, S and Neitlich, PN (1997) Repeatability of community data: species richness versus gradient scores in large-scale lichen studies. Bryologist 100, 4046.CrossRefGoogle Scholar
McMullin, RT and Allen, JL (2022) An assessment of data accuracy and best practice recommendations for observations of lichens and other taxonomically difficult taxa on iNaturalist. Botany 100, 491497.CrossRefGoogle Scholar
Merinero, S and Gauslaa, Y (2018) Specialized fungal parasites reduce fitness of their lichen hosts. Annals of Botany 121, 175182.CrossRefGoogle ScholarPubMed
Mesaglio, T and Callaghan, CT (2021) An overview of the history, current contributions and future outlook of iNaturalist in Australia. Wildlife Research 48, 289303.CrossRefGoogle Scholar
Mesaglio, T, Soh, A, Kurniawidjaja, S and Sexton, C (2021) ‘First Known Photographs of Living Specimens’: the power of iNaturalist for recording rare tropical butterflies. Journal of Insect Conservation 25, 905911.CrossRefGoogle Scholar
Miller, DAW, Pacifici, K, Sanderlin, JS and Reich, BJ (2019) The recent past and promising future for data integration methods to estimate species’ distributions. Methods in Ecology and Evolution 10, 2237.CrossRefGoogle Scholar
Miller, GH and Andrews, JT (1972) Quaternary history of northern Cumberland Peninsula, East Baffin Island, N.W.T., Canada. Part VI: preliminary lichen growth curve for Rhizocarpon geographicum. Geological Society of America Bulletin 83, 11331138.Google Scholar
Molina, MC, Crespo, A, Blanco, O, Lumbsch, HT and Hawksworth, DL (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and β-tubulin sequences. Lichenologist 36, 3754.CrossRefGoogle Scholar
Moncada, B, Goffinet, B, Magain, N, Hodkinson, BP, Smith, CW, Bungartz, F, Pérez-Pérez, RE, Gumboski, E, Sérusiaux, E, Lumbsch, HT, et al. (2021) Phylogenetic diversity of two geographically overlapping lichens: isolation by distance, environment, or fragmentation? Journal of Biogeography 48, 676689.CrossRefGoogle Scholar
Moncada, B, Coca, LF, Díaz-Escandón, D, Jaramillo-Ciro, M, Simijaca-Salcedo, D, Soto-Medina, E and Lücking, R (2022) Diversity, ecogeography, and importance of lichens of Colombia. In Almeida, R, Lücking, R, Vasco-Palacios, AM, Gaya, E and Diazgranados, M (eds), Catalogue of Fungi of Colombia. Richmond, UK: Royal Botanical Gardens, Kew, pp. 7791.Google Scholar
Moncada, B, Simijaca, D, Soto-Medina, E, Coca, LF and Jaramillo, M (2023) Allophoron farinosum. In The IUCN Red List of Threatened Species 2023: e.T180142319A180168563. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2023-1.RLTS.T180142319A180168563.es. [Accessed 3 June 2024].CrossRefGoogle Scholar
Moya, P, Molins, A, Martínez-Alberola, F, Muggia, L and Barreno, E (2017) Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS ONE 12, e0175091.CrossRefGoogle ScholarPubMed
Mueller, GM, Cunha, KM, May, TW, Allen, JL, Westrip, JRS, Canteiro, C, Costa-Rezende, DH, Drechsler-Santos, ER, Vasco-Palacios, AM, Ainsworth, AM, et al. (2022) What do the first 597 global fungal Red List assessments tell us about the threat status of Fungi? Diversity 14, 736.CrossRefGoogle Scholar
Muggia, L, Pérez-Ortega, S, Kopun, T, Zellnig, G and Grube, M (2014) Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Annals of Botany 114, 463475.CrossRefGoogle Scholar
Muggia, L, Leavitt, SD and Barreno, E (2018) The hidden diversity of lichenised Trebouxiophyceae (Chlorophyta). Phycologia 57, 503524.CrossRefGoogle Scholar
Muggia, L, Nelsen, MP, Kirika, PM, Barreno, E, Beck, A, Lindgren, H, Lumbsch, HT and Leavitt, SD (2020) Formally described species woefully underrepresent phylogenetic diversity in the common lichen photobiont genus Trebouxia (Trebouxiophyceae, Chlorophyta): an impetus for developing an integrated taxonomy. Molecular Phylogenetics and Evolution 149, 106821.CrossRefGoogle ScholarPubMed
Nazareno, AG, Bemmels, JB, Dick, CW and Lohmann, LG (2017) Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Molecular Ecology Resources 17, 11361147.CrossRefGoogle ScholarPubMed
Negi, HR and Gadgil, M (2002) Cross-taxon surrogacy of biodiversity in the Indian Garhwal Himalaya. Biological Conservation 105, 143155.CrossRefGoogle Scholar
Nic Lughadha, E, Bachman, SP, Leão, TC, Forest, F, Halley, JM, Moat, J, Acedo, C, Bacon, KL, Brewer, RF, Gâteblé, G, et al. (2020) Extinction risk and threats to plants and fungi. Plants, People, Planet 2, 389408.CrossRefGoogle Scholar
Nimis, PL (2023) ITALIC: the information system on Italian lichens. Version 7.0. Department of Biology, University of Trieste. [WWW document] URL https://dryades.units.it/italic. [Accessed 20 June 2023]. All data are released under a CC BY-SA 4.0 license.Google Scholar
Niskanen, T, Lücking, R, Dahlberg, A, Gaya, E, Suz, LM, Mikryukov, V, Liimatainen, K, Druzhinina, I, Westrip, JR, Mueller, GM, et al. (2023) Pushing the frontiers of biodiversity research: unveiling the global diversity, distribution, and conservation of fungi. Annual Review of Environment and Resources 48, 149176.CrossRefGoogle Scholar
Norwegian Biodiversity Information Centre (2021) Results from the 2021 Red List for Species. In Norwegian Red List for Species 2021. URL https://www.artsdatabanken.no/Pages/135386/Results_from_the_2021_Red [Accessed 6 June 2024].Google Scholar
O'Brien, D, Laikre, L, Hoban, S, Bruford, MW, Ekblom, R, Fischer, MC, Hall, J, Hvilsom, C, Hollingsworth, PM, Kershaw, F, et al. (2022) Bringing together approaches to reporting on within species genetic diversity. Journal of Applied Ecology 59, 22272233.CrossRefGoogle Scholar
Obermayer, W and Mayrhofer, H (2007) Hunting for Cetrelia chicitae (lichenized ascomycetes) in the eastern European Alps. Phyton (Horn Austria) 47, 231e290.Google Scholar
Öckinger, E and Nilsson, SG (2010) Local population extinction and vitality of an epiphytic lichen in fragmented old-growth forest. Ecology 91, 21002109.CrossRefGoogle ScholarPubMed
Ohmura, Y, Randlane, T and Spribille, T (2018) Lethariella togashii. In The IUCN Red List of Threatened Species 2018: e.T71605769A71605853. [WWW resource] URL http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T71605769A71605853.enCrossRefGoogle Scholar
Otálora, MAG, Salvador, C, Martínez, I and Aragón, G (2012) Does the reproductive strategy affect the transmission and genetic diversity of bionts in cyanolichens? A case study using two closely related species. Microbial Ecology 65, 517530.CrossRefGoogle ScholarPubMed
Outhwaite, CL, Gregory, RD, Chandler, RE, Collen, B and Isaac, NJB (2020) Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nature Ecology and Evolution 4, 384392.CrossRefGoogle ScholarPubMed
Paquette, H, Lendemer, J and Yahr, R (2021) Bryoria salazinica. In The IUCN Red List of Threatened Species 2021: e.T194660286A194678109. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS.T194660286A194678109.en. [Accessed 4 April 2024].CrossRefGoogle Scholar
Pearce, JL and Boyce, MS (2006) Modelling distribution and abundance with presence-only data. Journal of Applied Ecology 43, 405412.CrossRefGoogle Scholar
Pérez-Ortega, S, Verdú, M, Garrido-Benavent, I, Rabasa, S, Green, TGA, Sancho, LG and de los Ríos, A (2023) Invariant properties of mycobiont-photobiont networks in Antarctic lichens. Global Ecology and Biogeography 32, 20332046.CrossRefGoogle Scholar
Poelt, J and Vězda, A (1990) Über kurzlebige Flechten (on shortliving lichens). Bibliotheca Lichenologica 38, 377394.Google Scholar
Pringle, A, Chen, D and Taylor, JW (2003) Sexual fecundity is correlated to size in the lichenized fungus Xanthoparmelia cumberlandia. Bryologist 106, 221225.CrossRefGoogle Scholar
Pykälä, J, Jääskeläinen, K, Rämä, H, Launis, A, Vitikainen, O and Puolasmaa, A (2019) Lichens. In Hyvärinen, E, Juslén, A, Kemppainen, E, Uddström, A and Liukko, UM (eds), The 2019 Red List of Finnish Species. Helsinki: Ministry of the Environment and Finnish Environment Institute, pp. 263312.Google Scholar
Randlane, T, Jüriado, I, Mark, K, Marmor-Ohtla, L, Oja, E, Saag, A, Savchenko, A and Degtjarenko, P (2024) Steep increase in red-listed lichens of Estonia. Lichenologist 56, 329–343.CrossRefGoogle Scholar
Redchenko, O, Vondrák, J and Košnar, J (2012) The oldest sequenced fungal herbarium sample. Lichenologist 44, 715718.CrossRefGoogle Scholar
República de Colombia (1977) Resolución No. 213 de 1977 (01 Febrero). ‘Por la cual se establece veda para algunas especies y productos de la flora silvestre’. Bogotá: Instituto Nacional de los Recursos Naturales Renovables (INDERENA). URL https://cvc.gov.co/sites/default/files/Sistema_Gestion_de_Calidad/Procesos%20y%20procedimientos%20Vigente/Normatividad_Gnl/Resolucion%20213%20de%201977-Feb-01.pdf. [Accessed 8 June 2023].Google Scholar
República de Colombia (2024) Resolución No. 0126 de 2024 (06 Febrero). ‘Por la cual se establece el listado oficial de las especies silvestres amenazadas de la diversidad biológica colombiana continental y marino costera, se actualiza el comité coordinador de categorización de las Especies Silvestres Amenazadas en el territorio Nacional y se dictan otras disposiciones’. Bogotá: Ministerio de Ambiente y Desarrollo Sostenible. [WWW document] URL https://www.minambiente.gov.co/wp-content/uploads/2024/02/Resolucion-0126-de-2024.pdf. [Accessed 8 June 2023].Google Scholar
Rikkinen, J (2002) Cyanolichens: an evolutionary overview. In Rai, AN, Bergman, B and Rasmussen, U (eds), Cyanobacteria in Symbiosis. Dordrecht: Kluwer Academic, pp. 3172.Google Scholar
Rogers, RW (1990) Ecological strategies of lichens. Lichenologist 22, 149162.CrossRefGoogle Scholar
Rosa, RM, Cavallari, DC and Salvador, RB (2022) iNaturalist as a tool in the study of tropical molluscs. PLoS ONE 17, e0268048.CrossRefGoogle Scholar
Sancho, LG, Green, TGA and Pintado, A (2007) Slowest to fastest: extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora 202, 667673.CrossRefGoogle Scholar
Sanders, WB (2002) In situ development of the foliicolous lichen Phyllophiale (Trichotheliaceae) from propagule germination to propagule production. American Journal of Botany 89, 17411746.CrossRefGoogle ScholarPubMed
Sanders, WB (2014) Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: propagule dispersal, establishment of symbiosis, thallus development, and formation of sexual and asexual reproductive structures. American Journal of Botany 101, 18361848.CrossRefGoogle ScholarPubMed
Sanders, WB and de los Ríos, A (2015) Structure and in situ development of the microlichen Gyalectidium paolae (Gomphillaceae, Ascomycota), an overlooked colonist on palm leaves in southwest Florida. American Journal of Botany 102, 14031412.CrossRefGoogle ScholarPubMed
Sanders, WB and Lücking, R (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytologist 155, 425435.CrossRefGoogle ScholarPubMed
Sanders, WB and Masumoto, H (2021) Lichen algae: the photosynthetic partners in lichen symbioses. Lichenologist 53, 347393.CrossRefGoogle Scholar
Scheidegger, C (1995) Reproductive strategies in Vezdaea (Lecanorales, lichenized Ascomycetes): a low-temperature scanning electron microscopy study of a ruderal species. Cryptogamic Botany 5, 163171.Google Scholar
Scheidegger, C and Goward, T (2002) Monitoring lichens for conservation: red lists and conservation action plans. In Nimis, PL, Scheidegger, C and Wolseley, PA (eds), Monitoring with Lichens – Monitoring Lichens. NATO Science Series. Dordrecht: Springer, pp. 163181.CrossRefGoogle Scholar
Scheidegger, C and Werth, S (2009) Conservation strategies for lichens: insights from population biology. Fungal Biology Reviews 23, 5566.CrossRefGoogle Scholar
Scheidegger, C, Flachsmann, S, Zoller, S and Frey, B (1997) Naturschutzbiologie bei Flechten: Konzepte und Projekte. In Schöller, H. (ed.), Flechten: Geschichte, Biologie, Systematik, Ökologie, Naturschutz und kulturelle Bedeutung; Begleitheft zur Ausstellung ‘Flechten - Kunstwerke der Natur’. Frankfurt am Main: W. Kramer, pp. 167175.Google Scholar
Scheidegger, C, Clerc, P, Dietrich, M, Frei, M, Groner, U, Keller, C, Roth, I, Stofer, S and Vust, M (2002) Rote Liste der gefährdeten Arten der Schweiz. Baum- und erdbewohnende Flechten. Vollzug Umwelt. Bern: Bundesamt für Umwelt, Wald und Landschaft BUWAL.Google Scholar
Scheidegger, C, Stofer, S and Senn-Irlet, B (2015) Threatened species. In Rigling, A and Schaffer, HP (eds), Forest report 2015. Condition and use of Swiss forests. Birmensdorf: Federal Office for the Environment and Swiss Federal Institute for Forest, Snow and Landscape Research, pp. 8687.Google Scholar
Scheidegger, C, Keller, C and Stofer, S (2023) Flechten der Schweiz: Vielfalt, Biologie, Naturschutz. Mit 52 Exkursionen. Bern: Haupt Verlag.Google Scholar
Schmull, M, Dal Forno, M, Lücking, R, Cao, S, Clardy, J and Lawrey, JD (2014) Dictyonema huaorani (Agaricales: Hygrophoraceae), a new lichenized basidiomycete from Amazonian Ecuador with presumed hallucinogenic properties. Bryologist 117, 386394.CrossRefGoogle Scholar
Schultz, M (2017) Morphological and molecular data support Lichina intermedia as a distinct austral-marine species in the L. pygmaea group. Lichenologist 49, 321332.CrossRefGoogle Scholar
Shivarov, VV, Denchev, CM and Denchev, TT (2023) Red List of lichenized fungi in Bulgaria. Mycobiota 13, 130.CrossRefGoogle Scholar
Simijaca, D, Mueller, G and Vasco-Palacios, AM (2022) Fungal conservation in Colombia. In Almeida, R, Lücking, R, Vasco-Palacios, AM, Gaya, E and Diazgranados, M (eds), Catalogue of Fungi of Colombia. Richmond, UK: Royal Botanical Gardens, Kew, pp. 175187.Google Scholar
Simijaca, D, Pérez-Pérez, RE, Escoto-Moreno, J and Ocampo, G (2023) Multiple new records of lichenized fungi for Aguascalientes, with the assessment of the conservation status of two endemic species of Mexico. Botanical Sciences 101, 544559.CrossRefGoogle Scholar
Singh, G, Dal Grande, F, Divakar, PK, Otte, J, Crespo, A and Schmitt, I (2016) Fungal–algal association patterns in lichen symbiosis linked to macroclimate. New Phytologist 214, 317329.CrossRefGoogle ScholarPubMed
SLU Artdatabanken (2020) The Swedish Red List 2020. Checklist dataset. [WWW resource] URL https://doi.org/10.15468/jhwkpq [Accessed via GBIF.org 6 June 2024].CrossRefGoogle Scholar
Smith, BE, Johnston, MK and Lücking, R (2016) From GenBank to GBIF: phylogeny-based predictive niche modeling tests accuracy of taxonomic identifications in large occurrence data. PLoS ONE 11, e0151232.Google ScholarPubMed
Smith, PA, Lutz, M and Piatek, M (2020) Thecaphora melandrii. In The IUCN Red List of Threatened Species. IUCN. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T176460743A176931846.en. [Accessed 8 June 2023].CrossRefGoogle Scholar
Sohrabi, M, Myllys, L and Stenroos, S (2010) Successful DNA sequencing of a 75 year-old herbarium specimen of Aspicilia aschabadensis (J. Steiner) Mereschk. Lichenologist 42, 626628.CrossRefGoogle Scholar
Sokoloff, P and McMullin, T (2020) Seirophora aurantiaca. In The IUCN Red List of Threatened Species. IUCN. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T175710010A175710692.en. [Accessed 3 April 2023].CrossRefGoogle Scholar
Spake, R, Ezard, THG, Martin, PA, Newton, AC and Doncaster, CP (2015) A meta-analysis of functional group responses to forest recovery outside of the tropics. Conservation Biology 29, 16951703.CrossRefGoogle ScholarPubMed
Sparrius, LB and Kooijman, AM (2011) Invasiveness of Campylopus introflexus in drift sands depends on nitrogen deposition and soil organic matter. Applied Vegetation Science 14, 221229.CrossRefGoogle Scholar
Spielmann, A, Costa-Rezende, DH, Drechsler-Santos, ER, Gumboski, EL and Kossmann, T (2022) Parmotrema bifidum. In The IUCN Red List of Threatened Species. IUCN. [WWW resource] URL https://dx.doi.org/10.2305/IUCN.UK.2022-1.RLTS.T209742938A210566572.en. [Accessed 19 April 2023].CrossRefGoogle Scholar
Stone, DF (1989) Epiphyte succession on Quercus garryana branches in the Willamette Valley of western Oregon. Bryologist 92, 8194.CrossRefGoogle Scholar
Stropp, J, Umbelino, B, Correia, RA, Campos-Silva, JV, Ladle, RJ and Malhado, ACM (2020) The ghosts of forests past and future: deforestation and botanical sampling in the Brazilian Amazon. Ecography 43, 979989.CrossRefGoogle Scholar
Syfert, MM, Joppa, L, Smith, MJ, Coomes, DA, Bachman, SP and Brummitt, NA (2014) Using species distribution models to inform IUCN Red List assessments. Biological Conservation 177, 174184.CrossRefGoogle Scholar
Tapley, B, Michaels, CJ, Gumbs, R, Böhm, M, Luedtke, J, Pearce-Kelly, P and Rowley, JJ (2018) The disparity between species description and conservation assessment: a case study in taxa with high rates of species discovery. Biological Conservation 220, 209214.CrossRefGoogle Scholar
ter Steege, H, Haripersaud, PP, Bánki, OS and Schieving, F (2011) A model of botanical collectors’ behavior in the field: never the same species twice. American Journal of Botany 98, 3137.CrossRefGoogle Scholar
Thor, G (1995) Red Lists – aspects of their compilation and use in lichen conservation. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft 70, 2939.Google Scholar
Tingley, MW and Beissinger, SR (2009) Detecting range shifts from historical species occurrences: new perspectives on old data. Trends in Ecology and Evolution 24, 625633.CrossRefGoogle ScholarPubMed
Topham, PB (1977) Colonization, growth, succession and competition. In Seaward, MRD (ed.), Lichen Ecology. London: Academic Press, pp. 3168.Google Scholar
Upreti, DK, Divakar, PK and Nayaka, S (2005) Commercial and ethnic use of lichens in India. Economic Botany 59, 269273.CrossRefGoogle Scholar
Valavi, R, Guillera-Arroita, G, Lahoz-Monfort, JJ and Elith, J (2022) Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecological Monographs 92, e01486.CrossRefGoogle Scholar
Vandermeer, JH and Goldberg, DE (2013) Population Ecology: First Principles. Princeton, New Jersey: Princeton University Press.CrossRefGoogle Scholar
Velazco, SJE, Ribeiro, BR, Laureto, LMO and Júnior, PDM (2020) Overprediction of species distribution models in conservation planning: a still neglected issue with strong effects. Biological Conservation 252, 108822.CrossRefGoogle Scholar
Vessby, K, Soderstrom, B, Glimskar, A and Svensson, B (2002) Species richness correlations of six different taxa in Swedish seminatural grasslands. Conservation Biology 16, 430439.CrossRefGoogle Scholar
Vittoz, P, Bayfield, N, Brooker, R, Elston, DA, Duff, EI, Theurillat, J-P and Guisan, A (2010) Reproducibility of species lists, visual cover estimates and frequency methods for recording high-mountain vegetation. Journal of Vegetation Science 21, 10351047.CrossRefGoogle Scholar
Vondrák, J, Malíček, J, Palice, Z, Coppins, B, Kukwa, M, Czarnota, P, Sanderson, N and Acton, A (2016) Methods for obtaining more complete species lists in surveys of lichen biodiversity. Nordic Journal of Botany 34, 619626.CrossRefGoogle Scholar
von Hirschheydt, G, Kéry, M, Ekman, S, Stofer, S, Dietrich, M, Keller, C and Scheidegger, C (2024) Occupancy model reveals limited detectability of lichens in a standardised large-scale monitoring. Journal of Vegetation Science 35, e13255.CrossRefGoogle Scholar
Wei, J (2020) An Enumeration of Lichenized Fungi in China. Beijing: China Forestry Publishing House.Google Scholar
Werth, S and Scheidegger, C (2011) Isolation and characterization of 22 nuclear and 5 chloroplast microsatellite loci in the threatened riparian plant Myricaria germanica (Tamaricaceae, Caryophyllales). Conservation Genetics Resources 3, 445448.CrossRefGoogle Scholar
Werth, S and Sork, VL (2010) Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. American Journal of Botany 97, 821830.CrossRefGoogle ScholarPubMed
Wirth, V, Hauck, M, Brackel, W von, Cezanne, R, de Bruyn, U, Dürhammer, O, Eichler, M, Gnüchtel, A, John, V, Litterski, B, et al. (2011) Rote Liste und Artenverzeichnis der Flechten und flechtenbewohnenden Pilze Deutschlands. In Ludwig, G and Matzke-Hajek, G (eds), Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 6, Pilze (Teil 2), Flechten und Myxomyzeten. Münster: Landwirtschaftsverlag, pp. 7122.Google Scholar
Woods, RG and Coppins, BJ (2012) A Conservation Evaluation of British Lichens and Lichenicolous Fungi (Species Status 13). Peterborough: JNCC. URL https://hub.jncc.gov.uk/assets/39f3126a-5558-41e7-8b71-994c27a49541. [Accessed 8 June 2023].Google Scholar
Yánez-Ayabaca, A, Benítez Chávez, Á, Batallas, R, Naranjo, D, Etayo, J, Prieto, M, Cevallos, G, Caicedo, E, Scharnagl, K, McNerlin, B, et al. (2023 a) Towards a dynamic checklist of lichen-forming, lichenicolous and allied fungi of Ecuador – using the Consortium of Lichen Herbaria to manage fungal biodiversity in a megadiverse country. Lichenologist 55, 203222.CrossRefGoogle Scholar
Yánez-Ayabaca, A, Benítez Chávez, Á, Batallas, R, Naranjo, D, Etayo, J, Prieto, M, Cevallos, G, Caicedo, E, Scharnagl, K, McNerlin, B, et al. (2023 b) Lichen-forming, Lichenicolous and Allied Fungi of Ecuador. Symbiota Checklist. Consortium of Lichen Herbaria. [WWW resource] URL https://lichenportal.org/ portal/checklists/checklist.php?clid=1283. [Accessed 8 June 2023].Google Scholar
Yang, MX, Devkota, S, Wang, LS and Scheidegger, C (2021) Ethnolichenology – the use of lichens in the Himalayas and southwestern parts of China. Diversity 13, 330.CrossRefGoogle Scholar
Zavarzin, A, Krever, O, Sagitov, R and Petrov, V (2003) Red Lists and Red Data Books in North-West Russia: intents, approaches and realities! In de Iongh, HH, Bánki, OS, Bergmans, W, ten Bosc MJ, van der Werff (eds), The Harmonization of Red Lists for Threatened Species in Europe. Vol. 37. Leiden: Bakhuijs Publishers, pp. 225235.Google Scholar
Zedda, L and Rambold, G (2015) The diversity of lichenised fungi: ecosystem functions and ecosystem services. In Upreti, DK, Divakar, PK, Shukla, V and Bajpai, R (eds), Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques. New Delhi: Springer, pp. 121–45.CrossRefGoogle Scholar
Zhao, Y, Wang, M, and Xu, B (2021) A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. Journal of Functional Foods 80, 104283.CrossRefGoogle Scholar
Supplementary material: File

Yahr et al. supplementary material

Yahr et al. supplementary material
Download Yahr et al. supplementary material(File)
File 28.4 KB