Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T22:41:49.799Z Has data issue: false hasContentIssue false

A new species of Petractis (Ostropales s. lat., lichenized Ascomycota) from Wales

Published online by Cambridge University Press:  26 May 2009

Alan ORANGE
Affiliation:
Department of Biodiversity and Systematic Biology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, UK. Email: [email protected]

Abstract

Petractis nodispora is described as a new species, characterized by an endolithic thallus with Trentepohlia as photobiont, immersed apothecia, 3-septate, halonate ascospores, and very distinctive multicellular conidia. Nuclear ribosomal SSU and LSU sequences show that it is closely related to P. luetkemuelleri, but its relationship to the type species of Petractis, P. clausa, is unclear.

Type
Research Article
Copyright
Copyright © British Lichen Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clauzade, G. & Roux, C. (1985) Likenoj de Okcidenta Eǔropo. Ilustrita determinlibro. Bulletin de la Société Botanique du Centre-Ouest, Nouvelle série, Numéro Spécial 7-1985.Google Scholar
Döring, H., Clerc, P., Grube, M. & Wedin, M. (2000) Mycobiont-specific PCR primers for the amplification of nuclear ITS and LSU rDNA from lichenized ascomycetes. Lichenologist 32: 200204.CrossRefGoogle Scholar
Gardes, M. & Bruns, T.D. (1993) ITS primers with enhanced specificity of basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Gargas, A. & Taylor, J.W. (1992) Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18S rDNA from lichenized fungi. Mycologia 84: 589592.CrossRefGoogle Scholar
Huelsenbeck, J.P. & Ronquist, F. (2005) MrBayes 3.1.2: Bayesian inference of phylogeny, available at www.mrbayes.scs.fsu.edu/index.php.Google Scholar
Kauff, F. & Lutzoni, F. (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution 25: 138156.CrossRefGoogle ScholarPubMed
Lumbsch, H.T., Schmitt, I., Palice, Z., Wiklund, E., Ekman, S. & Wedin, M. (2004) Supraordinal phylogenetic relationships of Lecanoromycetes based on a Bayesian analysis of combined nuclear and mitochondrial sequences. Molecular Phylogenetics and Evolution 31: 822832.CrossRefGoogle ScholarPubMed
Lumbsch, T., Schmitt, I., Mangold, A. & Wedin, M. (2007) Ascus types are phylogenetically misleading in Trapeliaceae and Agyriaceae (Ostropomycetidae, Ascomycota). Mycological Research 111: 11331141.CrossRefGoogle ScholarPubMed
Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. (http://www.abc.se/~nylander).Google Scholar
Swofford, D.L. (1998) PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods) Version 4.0 Beta. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Tamura, K, Dudley, J, Nei, M & Kumar, S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 15961599.CrossRefGoogle ScholarPubMed
Vězda, A. (1965) Flechtensystematische Studien I. Die Gattung Petractis Fr. Preslia 37: 127143.Google Scholar
Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 42384246.CrossRefGoogle ScholarPubMed