Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:22:14.623Z Has data issue: false hasContentIssue false

A molecular phylogeny of the lichen genus Biatora including some morphologically similar species

Published online by Cambridge University Press:  12 May 2014

Christian PRINTZEN*
Affiliation:
Senckenberg Forschungsinstitut und Naturmuseum, Abteilung Botanik und Molekulare Evolutionsforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany. Email: [email protected]

Abstract

The lichen genus Biatora comprises inconspicuous crustose lichens that are typically found on organic substrata such as tree bark, bryophytes and detritus. During the last 20 years many new species have been added to the genus making its delimitation more and more difficult. The infrageneric relationships of the 42 species have never been investigated thoroughly. Using DNA sequences from three gene loci (ITS, RPB2, mrSSU) and 59 OTUs, an attempt was made to reconstruct the phylogenetic relationships of Biatora and its infrageneric groups. Cliostomum appears to be the closest relative of Biatora. The position of Mycobilimbia in the Lecania-clade is confirmed. Phylogenetic relationships within Biatora are poorly supported, but six different species groups that are also phenotypically distinguished are more or less well supported: the vernalis-, meiocarpa-, hertelii-, ocelliformis-, beckhausii- and rufidula- groups. The analysis also confirms the presence of several undescribed taxa. Biatora subduplex as currently circumscribed appears to be heterogeneous, as does B. helvola. Based on the phylogeny, the distributional range of B. alaskana is extended to Japan. The new combinations Biatora ementiens (Nyl.) Printzen and Biatora hemipolia (Nyl.) S. Ekman & Printzen are made and both names are typified.

Type
Articles
Copyright
Copyright © British Lichen Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, J. M., Hedtke, S. M., Lemmon, A. R. & Moriarty Lemmon, E. (2010) When trees grow too long: investigating the causes of highly inaccurate Bayesian branch-length estimates. Systematic Biology 59: 145161.Google Scholar
Buschbom, J. & Mueller, G. M. (2006) Testing “species pair” hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes . Molecular Biology and Evolution 23: 574586.Google Scholar
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540552.Google Scholar
Choisy, M. (1949) Catalogue des lichens de la région Lyonnaise. Fasc. 2. Bulletin mensuelle de la Société linnéenne de Lyon 18: 137152.Google Scholar
Coppins, B. J. (1983) A taxonomic study of the lichen genus Micarea in Europe. Bulletin of the British Museum (Natural History), Botany 11: 17214.Google Scholar
Du Rietz, G. E. (1924) Die Soredien und Isidien der Flechten. Svensk Botanisk Tidskrift 18: 371396.Google Scholar
Ekman, S. (1996) The corticolous and lignicolous species of Bacidia and Bacidina in North America. Opera Botanica 127: 1148.Google Scholar
Ekman, S. (1997) The genus Cliostomum revisited. Symbolae Botanicae Upsalienses 32(1): 1728.Google Scholar
Ekman, S. (2001) Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycological Research 105: 783797.Google Scholar
Fries, E. M. & Sandberg, A. (1817) Lichenum Dianome Nova. Lund: Berlingiana.Google Scholar
Fries, T. M. (1874) Lichenographia Scandinavica. Pars 2. Uppsala: Lundequist.Google Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.Google Scholar
Hafellner, J. (1984) Studien in Richtung einer natürlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae . Nova Hedwigia, Beiheft 79: 241371.Google Scholar
Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 9598.Google Scholar
Hinteregger, E. (1994) Krustenflechten auf den Rhododendron-Arten (Rh. ferrugineum und Rh. hirsutum) der Ostalpen unter besonderer Berücksichtigung einiger Arten der Gattung Biatora . Bibliotheca Lichenologica 55: 1346.Google Scholar
Holien, H. & Tønsberg, T. (2012) Biatora kodiakensis confirmed from Europe. Graphis Scripta 24: 4952.Google Scholar
Körber, G. W. (1855) Systema Lichenum Germaniae. Breslau: Trewendt & Granier.Google Scholar
Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 16951701.Google Scholar
Liu, Y. L., Whelen, S. & Hall, B. D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 17991808.Google Scholar
Meyer, B. & Printzen, C. (2000) Proposal for a standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32: 571583.Google Scholar
Nylander, W. (1855) Essai d'une nouvelle classification des lichens. Mémoires de la Société Scientifique Naturelles de Cherbourg 3: 161202.Google Scholar
Printzen, C. (1995) Die Flechtengattung Biatora in Europa. Bibliotheca Lichenologica 60: 1275.Google Scholar
Printzen, C. (2004) Biatora. In Lichen Flora of the Greater Sonoran Desert Region. Vol. 2. (Nash, T. H. III, Ryan, B. D., Diederich, P., Gries, C. & Bungartz, F., eds): 3839. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Printzen, C. & Lumbsch, H.T. (2000) Molecular evidence for the diversification of extant lichens in the Late Cretaceous and Tertiary. Molecular Phylogenetics and Evolution 17: 379387.Google Scholar
Printzen, C. & Tønsberg, T. (1999) The lichen genus Biatora in northwestern North America. Bryologist 102: 692713.Google Scholar
Printzen, C. & Tønsberg, T. (2003) Four new species and three new apothecial pigments from the lichen genus Biatora . Bibliotheca Lichenologica 86: 133145.Google Scholar
Printzen, C. & Tønsberg, T. (2004) New and interesting Biatora-species, mainly from North America. Symbolae Botanicae Upsalienses 34(1): 343357.Google Scholar
Printzen, C., Holien, H. & Etayo, J. (1998) Two new Biatora species from western Norway and Madeira. Lichenologist 30: 213219.CrossRefGoogle Scholar
Printzen, C., Lumbsch, H. T. & Orange, A. (2001) Biatora britannica sp. nov. and the occurrence of Biatora efflorescens in the British Isles. Lichenologist 33: 181187.CrossRefGoogle Scholar
Printzen, C., Coppins, B. J. & Aptroot, A. (2009) Mycobilimbia. In The Lichens of Great Britain and Ireland (Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W. & Wolseley, P. A., eds): 613615. London: British Lichen Society.Google Scholar
Räsänen, V. (1926) Die Flechtenflora des Gebietes Ostrobottnia borealis. Annales Botanici Societatis Zoologicae-Botanicae Fennicae “Vanamo” 3: 268349.Google Scholar
Reese Næsborg, R. (2008) Taxonomic revision of the Lecania cyrtella group based on molecular and morphological evidence. Mycologia 100: 397416.Google Scholar
Reese Næsborg, R., Ekman, S. & Tibell, L. (2007) Molecular phylogeny of the genus Lecania (Ramalinaceae, lichenized Ascomycota). Mycological Research 111: 581591.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.Google Scholar
Silvestro, D. & Michalak, I. (2010) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution 12: 335337.Google Scholar
Spribille, T., Björk, C. B., Ekman, S., Elix, J. A., Goward, T., Printzen, C., Tønsberg, T. & Wheeler, T. (2009) Contributions to an epiphytic lichen flora of northwest North America: I. Eight new species from British Columbia inland rain forests. Bryologist 112: 109137.Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.Google Scholar
Tehler, A., Irestedt, M., Bungartz, F. & Wedin, M. (2009) Evolution and reproduction modes in the Roccella galapagoensis aggregate (Roccellaceae, Arthoniales). Taxon 58: 438456.Google Scholar
Tiffney, B. H. (1985) Perspectives on the origin of the floristic similarity between Eastern Asia and Eastern North America. Journal of the Arnold Arboretum 66: 7394.Google Scholar
Vainio, E. A. (1934) Lichenographia Fennica IV. Lecideales II. Acta Societatis pro Fauna et Flora Fennica 57 (2): 1531.Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. New York: Academic Press.Google Scholar
Zahlbruckner, A. (1926) Catalogus Lichenum Universalis. Vol 4. Leipzig: Bornträger.Google Scholar
Zhou, S. & Stanosz, G. R. (2001) Primers for amplification of mt SSU rDNA, and a phylogenetic study of Botryosphaeria and associated anamorphic fungi. Mycological Research 105: 10331044.Google Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.Google Scholar
Supplementary material: PDF

PRINTZEN supplementary material

Supplementary appendix

Download PRINTZEN supplementary material(PDF)
PDF 100.4 KB