Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T23:06:48.577Z Has data issue: false hasContentIssue false

Molecular data support Ramalina ovalis as a distinct lineage (Ramalinaceae, Ascomycota)

Published online by Cambridge University Press:  09 July 2014

Glenys C. HAYWARD
Affiliation:
Sacred Heart College, 250 West Tamaki Road, Glendowie, Auckland 1071, New Zealand
Dan J. BLANCHON*
Affiliation:
Biodiversity and Animal Welfare Research Group, Department of Natural Sciences, Unitec Institute of Technology, Private Bag 92025, Auckland 1142, New Zealand. Email: [email protected]
H. Thorsten LUMBSCH
Affiliation:
Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA

Abstract

Ramalina celastri is a highly variable, widely distributed pan-subtropical lichen species. In Australasia the species had been separated into two subspecies; R. celastri subsp. celastri and R. celastri subsp. ovalis. This study compares morphological variation, substratum preference and sequences of the internal transcribed spacer (ITS) and intergenic spacer (IGS) regions of ribosomal DNA from a range of specimens from New Zealand and one from Australia. Bayesian and ML trees generated using the sequence data form two well-supported clades corresponding to the two previously recognized subspecies. Molecular, morphological and geographical differences support the recognition of R. ovalis at the species rank.

Type
Articles
Copyright
Copyright © British Lichen Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bannister, J. M. & Blanchon, D. J. (2003) The lichen genus Ramalina Ach. (Ramalinaceae) on the outlying islands of the New Zealand geographic area. Lichenologist 35: 137146.CrossRefGoogle Scholar
Bannister, P., Bannister, J. M. & Blanchon, D. J. (2004) Distribution, habitat, and relation to climatic factors of the lichen genus Ramalina in New Zealand. New Zealand Journal of Botany 42: 121138.CrossRefGoogle Scholar
Blanchon, D. J., Braggins, J. E. & Stewart, A. (1996) The lichen genus Ramalina in New Zealand. Journal of the Hattori Botanical Laboratory 79: 4398.Google Scholar
Blanco, O., Crespo, A., Elix, J. A., Hawksworth, D. L. & Lumbsch, H. T. (2004) A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon 53: 959975.Google Scholar
Crespo, A. & Lumbsch, H. T. (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1: 167170.Google Scholar
Crespo, A. & Pérez-Ortega, S. (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid 66: 7181.Google Scholar
Crespo, A., Divakar, P. K., Arguello, A., Gasca, C. & Hawksworth, D. L. (2004) Molecular studies on Punctelia species of the Iberian Peninsula, with an emphasis on specimens newly colonizing Madrid. Lichenologist 36: 299308.Google Scholar
Crespo, A., Kauff, F., Divakar, P. K., del Prado, R., Pérez-Ortega, S., Amo de Paz, G., Ferencova, Z., Blanco, O., Roca-Valiente, B., Núñez-Zapata, J., et al. (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59: 17351753.Google Scholar
Culberson, C. F. & Ammann, K. (1979) Standardmethode zur Dünnschichtchromatographie von Flechtensubstanzen. Herzogia 5: 124.Google Scholar
Culberson, W. L., Culberson, C. F. & Johnson, A. (1983) Genetic and environmental effects on growth and production of secondary compounds in Cladonia cristatella . Biochemical Systematics and Ecology 11: 7784.CrossRefGoogle Scholar
Czarnota, P. & Guzow-Krzeminska, B. (2012) ITS rDNA data confirm a delimitation of Bacidina arnoldiana and B. sulphurella and support a description of a new species within the genus Bacidina . Lichenologist 44: 743755.Google Scholar
Drummond, A., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Sturrock, S., et al. (2011) Geneious v5.5, Available from http://www.geneious.com.Google Scholar
Fernandez-Mendoza, F., Domaschke, S., Garcia, M. A., Jordan, P., Martin, M. P. & Printzen, C. (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata . Molecular Ecology 20: 12081232.Google Scholar
Galloway, D. J. (2007) Flora of New Zealand Lichens. Revised Second Edition Including Lichen-Forming and Lichenicolous Fungi. Lincoln, New Zealand: Manaaki Whenua Press.Google Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.Google Scholar
Hodkinson, B. P. & Lendemer, J. C. (2011) Molecular analyses reveal semi-cryptic species in Xanthoparmelia tasmanica . Bibliotheca Lichenologica 106: 108119.Google Scholar
Högnabba, F. (2006) Molecular phylogeny of the genus Stereocaulon (Stereocaulaceae, lichenized ascomycetes). Mycological Research 110: 10801092.Google Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.Google Scholar
Kantvilas, G. (1991) Records of East African lichens in cool temperate Australia. Nordic Journal of Botany 11: 369373.CrossRefGoogle Scholar
Kashiwadani, H. & Kalb, K. (1993) The genus Ramalina in Brazil. Lichenologist 25: 131.CrossRefGoogle Scholar
Krog, H. & Swinscow, T. D. V. (1976) The genus Ramalina in East Africa. Norwegian Journal of Botany 23: 153175.Google Scholar
Leavitt, S. D., Fankhauser, J. D., Leavitt, D. H., Porter, L. D., Johnson, L. A. & St. Clair, L. L. (2011) Complex patterns of speciation in cosmopolitan “rock posy” lichens – discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Molecular Phylogenetics and Evolution 59: 587602.Google Scholar
Leavitt, S. D., Esslinger, T. L., Divakar, P. K. & Lumbsch, H. T. (2012) Miocene divergence, phenotypically cryptic lineages, and contrasting distribution patterns in common lichen-forming fungi (Ascomycota: Parmeliaceae). Biological Journal of the Linnean Society 107: 920937.Google Scholar
Leavitt, S. D., Fernández-Mendoza, F., Sohrabi, M., Lumbsch, H. T. & St. Clair, L. L. (2013) DNA barcode identification of lichen-forming fungal species in the Rhizoplaca melanophthalma species-complex (Lecanorales, Lecanoraceae), including five new species. MycoKeys 7: 122.Google Scholar
Lendemer, J. C. & Hodkinson, B. P. (2010) A new perspective on Punctelia subrudecta (Parmeliaceae) in North America: previously rejected morphological characters corroborate molecular phylogenetic evidence and provide insight into an old problem. Lichenologist 42: 405421.Google Scholar
Lumbsch, H. T. & Leavitt, S. D. (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Diversity 50: 5972.Google Scholar
Lumbsch, H. T. & Wirtz, N. (2011) Phylogenetic relationships of the neuropogonoid core group in the genus Usnea (Ascomycota: Parmeliaceae). Lichenologist 43: 553559.Google Scholar
Lumbsch, H. T., Parnmen, S., Rangsiruji, A. & Elix, J. A. (2010) Phenotypic disparity and adaptive radiation in the genus Cladia (Lecanorales, Ascomycota). Australian Systematic Botany 23: 239247.Google Scholar
Molina, M. D., Crespo, A., Blanco, O., Lumbsch, H. T. & Hawksworth, D. L. (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and beta-tubulin sequences. Lichenologist 36: 3754.Google Scholar
Molina, M. C., Del-Prado, R., Kumar Divakar, P., Sanchez-Mata, D. & Crespo, A. (2011) Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae). Organisms Diversity & Evolution 11: 331342.Google Scholar
Nuñez-Zapata, J., Divakar, P. K., Del-Prado, R., Cubas, P., Hawksworth, D. L. & Crespo, A. (2011) Conundrums in species concepts: the discovery of a new cryptic species segregated from Parmelina tiliacea (Ascomycota: Parmeliaceae). Lichenologist 43: 603616.Google Scholar
Otálora, M. A. G., Martínez, I., Aragón, G. & Molina, M. C. (2010) Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern. American Journal of Botany 97: 216223.Google Scholar
Pant, G. & Awasthi, D. D. (2003) Lichen genus Ramalina in India and Nepal. Indian Journal of Forestry 26: 299316.Google Scholar
Parnmen, S., Rangsiruji, A., Mongkolsuk, P., Boonpragob, K., Elix, J. A. & Lumbsch, H. T. (2010) Morphological disparity in Cladoniaceae: the foliose genus Heterodea evolved from fruticose Cladia species (Lecanorales, lichenized Ascomycota). Taxon 59: 841849.Google Scholar
Parnmen, S., Rangsiruji, A., Mongkolsuk, P., Boonpragob, K., Nutakki, A. & Lumbsch, H. T. (2012) Using phylogenetic and coalescent methods to understand the species diversity in the Cladia aggregata complex (Ascomycota, Lecanorales) . PLoS ONE 7: e52245.Google Scholar
Parnmen, S., Leavitt, S. D., Rangsiruji, A. & Lumbsch, H. T. (2013) Identification of species in the Cladia aggregata group using DNA barcoding (Ascomycota: Lecanorales). Phytotaxa 115: 114.Google Scholar
Pérez-Ortega, S., Fernández-Mendoza, F., Raggio, J., Vivas, M., Ascaso, C., Sancho, L. G., Printzen, C. & De Los Ríos, A. (2012) Extreme phenotypic variation in Cetraria aculeata (lichenized Ascomycota): adaptation or incidental modification? Annals of Botany 109: 11331148.CrossRefGoogle ScholarPubMed
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.Google Scholar
Stevens, G. N. (1983) Clarification of the name Ramalina linearis . Lichenologist 15: 95101.Google Scholar
Stevens, G. N. (1987) The lichen genus Ramalina in Australia. Bulletin of the British Museum (Natural History), Botany 16: 107223.Google Scholar
Swinscow, T. D. V. & Krog, H. (1988) Macrolichens of East Africa. London: British Museum (Natural History).Google Scholar
Tehler, A. & Irestedt, M. (2007) Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota). Cladistics 23: 432454.Google Scholar
Vondrak, J., Riha, P., Arup, U. & Søchting, U. (2009) The taxonomy of the Caloplaca citrina group (Teloschistaceae) in the Black Sea region; with contributions to the cryptic species concept in lichenology. Lichenologist 41: 571604.CrossRefGoogle Scholar
Wedin, M. & Döring, H. (1999) The phylogenetic relationship of the Sphaerophoraceae, Austropeltum and Neophyllis (lichenized Ascomycota) inferred by SSU rDNA sequences. Mycological Research 103: 11311137.Google Scholar
White, T. J., Bruns, T. D., Lee, S. B. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. San Diego: Academic Press.Google Scholar
Wirtz, N., Printzen, C. & Lumbsch, H. T. (2008) The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycological Research 112: 472484.Google Scholar
Wirtz, N., Printzen, C. & Lumbsch, H. T. (2012) Using haplotype networks, estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic Usnea group (Ascomycota, Parmeliaceae). Organisms Diversity & Evolution 12: 1737.Google Scholar