Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T11:24:44.377Z Has data issue: false hasContentIssue false

Effects of salinity stress on cellular location of elements and photosynthesis in Ramalina canariensis Steiner

Published online by Cambridge University Press:  01 February 2011

Paula MATOS
Affiliation:
Universidade de Lisboa, Jardim Botânico, Museu Nacional de História Natural, R. Escola Politécnica 58, 1250-102 Lisboa, Portugal. Email: [email protected]. Universidade de Lisboa, Faculdade de Ciências (FCUL), Centro de Biologia Ambiental (CBA), Edifício C2, 5° Piso, Campo Grande 1749-016 Lisboa, Portugal.
João CARDOSO-VILHENA
Affiliation:
Universidade de Lisboa, Jardim Botânico, Museu Nacional de História Natural, R. Escola Politécnica 58, 1250-102 Lisboa, Portugal. Email: [email protected]. Universidade Atlântica, Antiga Fábrica da Pólvora de Barcarena, 2745-615 Barcarena, Portugal.
Rui FIGUEIRA
Affiliation:
Instituto de Investigação Científica Tropical, Jardim Botânico Tropical, Trav. Conde da Ribeira 9, 1300-142 Lisboa, Portugal. Instituto Superior Técnico, CERENA-Centro de Recursos Naturais e Ambiente, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
A. Jorge SOUSA
Affiliation:
Instituto Superior Técnico, CERENA-Centro de Recursos Naturais e Ambiente, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

Abstract

The impact of incubation in saline solutions of different concentrations on the uptake and cellular location of essential elements (Na+, K+, Mg2+ and Ca2+), and its effects on membrane integrity and on the photosynthetic apparatus, were investigated in the lichen Ramalina canariensis Steiner. Saline incubation resulted in a rapid uptake of Na+ and Mg2+ in the cell wall fraction, whereas in the intracellular fraction the accumulation of Na+ was slower. No changes were observed for intracellular Mg2+, suggesting that no generalized membrane damage occurred. Concomitantly with the increase in intracellular Na+, there was a specific loss of K+ from the cell interior, indicating that membrane permeability may have been compromised. Incubation in a 100% artificial sea water solution reduced the maximum photochemical efficiency of Photosystem II (Fv/Fm) by 17% after 5 min, and this inhibition increased with incubation time. In samples incubated in 100% artificial sea water solution for 2 h followed by 2 h incubation in deionized water, ion distribution and Fv/Fm did not recover to control values. The present findings show the importance of determining the cellular location of elements when assessing their physiological impact. Results indicate that saline stress may irreversibly impair photosynthesis, thus compromising lichen vitality.

Type
Research Article
Copyright
Copyright © British Lichen Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, J. W., Wibbelmann, M. H. & Proctor, M. C. F. (2009) Salinity responses of halophytic and non-halophytic bryophytes determined by chlorophyll fluorometry. Journal of Bryology 31: 1119.CrossRefGoogle Scholar
Branquinho, C., Brown, D. H. & Catarino, F. (1997 a) The cellular location of Cu in lichens and its effect on membrane integrity and chlorophyll fluorescence. Environmental and Experimental Botany 38: 165179.CrossRefGoogle Scholar
Branquinho, C., Brown, D. H., Máguas, C. & Catarino, F. (1997 b) Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environmental and Experimental Botany 37: 95105.CrossRefGoogle Scholar
Branquinho, C., Catarino, F., Brown, D. H., Pereira, M. J. & Soares, A. (1999) Improving the use of lichens as biomonitors of atmospheric metal pollution. The Science of the Total Environment 232: 6777.CrossRefGoogle ScholarPubMed
Brown, D. H. & Brown, R. M. (1991) Mineral cycling and lichens: the physiological basis. Lichenologist 23: 293307.CrossRefGoogle Scholar
Brown, D. H. & Wells, J. M. (1988) Sequential elution technique for determining the cellular location of cations. In Methods in Bryology (Glime, J. M., ed): 227233. Nichinan, Hattori: Botanical Laboratory.Google Scholar
Buck, G. W. & Brown, D. H. (1979) The effect of desiccation on cation location in lichens. Annals of Botany 44: 265277.CrossRefGoogle Scholar
Figueira, R., Branquinho, C., Pacheco, A. M. G., Sousa, A. J. & Catarino, F. (1994) Desenvolvimento de biomonitores de salinidade atmosférica. In 4a Conferência Nacional sobre a Qualidade do Ambiente6–8 April, 1994Universidade Nova de Lisboa, Lisboa, Portugal, pp. M36M48.Google Scholar
Figueira, R., Catarino, F., Pacheco, A. M. G. & Sousa, A. J. (1998) In situ studies on sea-salt uptake by epiphytic lichens. Sauteria 9: 143150.Google Scholar
Figueira, R., Sousa, A. J., Brown, D. H., Catarino, F. & Pacheco, A. M. G. (1999 a) Natural levels of saline elements in lichens: determination of cellular fractions and their importance as saline tracers. Lichenologist 31: 183196.CrossRefGoogle Scholar
Figueira, R., Sousa, A. J., Pacheco, A. M. G. & Catarino, F. (1999 b) Saline variability at ground level after kriging data from Ramalina spp. biomonitors. The Science of the Total Environment 232: 311.CrossRefGoogle Scholar
Figueira, R., Pacheco, A. M. G, Sousa, A. J. & Catarino, F. (2002) Development and calibration of epiphytic lichens as saltfall biomonitors – dry-deposition modelling. Environmental Pollution 120: 6978.CrossRefGoogle ScholarPubMed
Garty, J., Kloog, N. & Cohen, Y. (1998) Integrity of lichen cell membranes in relation to concentration of airborne elements. Archives of Environmental Contamination and Toxicology 34: 136144.CrossRefGoogle ScholarPubMed
Garty, J., Tamir, O., Hassid, I., Eshel, A., Cohen, Y., Karnieli, A. & Orlovsky, L. (2001) Photosynthesis, chlorophyll integrity and spectral reflectance in lichens exposed to air pollution. Journal of Environmental Quality 30: 884893.CrossRefGoogle ScholarPubMed
Godinho, R. M., Freitas, M. C. & Wolterbeek, H. T. (2004) Assessment of lichen vitality during a transplantation experiment to a polluted site. Journal of Atmospheric Chemistry 49: 355361.CrossRefGoogle Scholar
Hájek, J., Barták, M. & Dubová, J. (2006) Inhibition of photosynthetic processes in foliose lichens induced by temperature and osmotic stress. Biologia Plantarum 50: 624634.CrossRefGoogle Scholar
Hauck, M., Paul, A. & Spribille, T. (2006) Uptake and toxicity of manganese in epiphytic cyanolichens. Environmental and Experimental Botany 56: 216224.CrossRefGoogle Scholar
Jensen, M., Chakir, S. & Feige, G.B. (1999) Osmotic and atmospheric dehydration effects in the lichens Hypogymnia physodes, Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction. Photosynthetica 37: 393404.CrossRefGoogle Scholar
Kranner, I., Beckett, R., Hochman, A. & Nash, T. H. III. (2008). Desiccation-tolerance in lichens: a review. Bryologist 111: 576593.CrossRefGoogle Scholar
Larson, D. W., Matthes-Sears, U. & Nash, T. H. III. (1985) The ecology of Ramalina menziesii. I. Geographical variation in form. Canadian Journal of Botany 63: 20622068.CrossRefGoogle Scholar
Matos, P. (2007) Biomonitorização da deposição salina e de elementos traço no Sudoeste Alentejano. Tese de Mestrado. Faculdade de Ciências e Tecnologia, Universidade de Coimba, 83 pp.Google Scholar
Matthes-Sears, U., Nash, T. H. III & Larson, D. W. (1986) The ecology of Ramalina menziesii. III. In situ diurnal field measurements at two sites on a coast-inland gradient. Canadian Journal of Botany 64: 988996.CrossRefGoogle Scholar
Matthes-Sears, U., Nash, T. H. III & Larson, D. W. (1987) Salt loading does not control CO2 exchange in Ramalina menziesii Tayl.. New Phytologist 106: 5969.CrossRefGoogle Scholar
Nash, T. H. III. (1996) Lichen Biology. Cambridge: Cambridge University Press.Google Scholar
Nash, T. H. III & Lange O., L. (1988) Responses of lichens to salinity: concentration and time-course relationships and variability among Californian species. New Phytologist 109: 361367.CrossRefGoogle Scholar
Smith, V. R. & Gremmen, N. J. M. (2001) Photosynthesis in a sub-Antarctic shore-zone lichen. New Phytologist 149: 291299.CrossRefGoogle Scholar
Weissman, L., Garty, J. & Hochman, A. (2005) Characterization of enzymatic antioxidants in the lichen Ramalina lacera and their response to rehydration. Applied and Environmental Microbiology 71: 65086514.CrossRefGoogle ScholarPubMed