Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T07:56:52.786Z Has data issue: false hasContentIssue false

Ducatina umbilicata gen. et sp. nov., a remarkable Trapeliaceae from the subantarctic islands in the Indian Ocean

Published online by Cambridge University Press:  10 March 2017

Damien ERTZ
Affiliation:
Department Bryophytes-Thallophytes (BT), Botanic Garden Meise, Nieuwelaan 38, B-1860 Meise, Belgium; and Fédération Wallonie-Bruxelles, Direction Générale de l’Enseignement non obligatoire et de la Recherche Scientifique, Rue A. Lavallée 1, B-1080 Bruxelles, Belgium. Email: [email protected]
Ulrik SØCHTING
Affiliation:
Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
Alice GADEA
Affiliation:
Université de Rennes 1, UMR CNRS 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France; and UMR CNRS 6226, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France
Maryvonne CHARRIER
Affiliation:
Université de Rennes 1, UMR CNRS 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
Roar S. POULSEN
Affiliation:
Smallegade 2, 9520 Skørping, Denmark

Abstract

The new genus and species Ducatina umbilicata is described from Îles Crozet and Îles Kerguelen. This lichen is characterized by an umbilicate thallus with a black verrucose lower surface and a greyish to dark olivaceous smooth upper surface having large verrucae, large semi-immersed cephalodia, semi-immersed apothecia with a prominent thalline margin, simple, mainly ellipsoid ascospores of 23–42×12–25 µm and the presence of unknown chemical compounds. Phylogenetic analyses using nuLSU and mtSSU sequences place Ducatina in the Trapeliaceae (Baeomycetales). The new taxon is closely related to Orceolina antarctica and O. kerguelensis, two other lichens endemic to these subantarctic islands, differing by its morphology and the lack of chemical compounds. Ducatina is the only genus in the Trapeliaceae to develop a large umbilicate thallus.

Type
Articles
Copyright
© British Lichen Society, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A. A., Fishbein, M., Halitschke, R., Hastings, A. P., Rabosky, D. L. & Rasmann, S. (2009) Evidence for adaptive radiation from a phylogenetic study of plant defenses. Proceedings of the National Academy of Sciences of the United States of America 106: 1806718072.CrossRefGoogle ScholarPubMed
Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory (B.N. Petrov & F. Csaki, eds): 267281. Budapest: Akademiai Kiado.Google Scholar
Brodo, I. M. (1995) Notes on the lichen genus Placopsis (Ascomycotina, Trapeliaceae) in North America. Bibliotheca Lichenologica 57: 5970.Google Scholar
Divakar, P. K., Kauff, F., Crespo, A., Leavitt, S. D. & Lumbsch, H. T. (2013) Understanding phenotypical character evolution in Parmelioid lichenized fungi (Parmeliaceae, Ascomycota). PLoS ONE 8: e83115.CrossRefGoogle ScholarPubMed
Dodge, C. W. (1948) Lichens and lichen parasites. British, Australian and New Zealand Antarctic Research Expedition Scientific Reports 1929–1931, Series B 7: 1276.Google Scholar
Doyle, J. J. & Doyle, J. L. (1990) Isolation of plant DNA from fresh tissue. Focus 12: 1315.Google Scholar
Ertz, D., Aptroot, A., Van de Vijver, B., Śliwa, L., Moermans, C. & Øvstedal, D. (2014) Lichens from the Utsteinen Nunatak (Sør Rondane Mountains, Antarctica), with the description of one new species and the establishment of permanent plots. Phytotaxa 191: 99114.CrossRefGoogle Scholar
Frenot, Y., Gloaguen, J.-C., Massé, L. & Lebouvier, M. (2001) Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam Islands. Biological Conservation 101: 3350.Google Scholar
Galloway, D. J. (2010) Additions to the Placopsis mycobiota (Trapeliaceae, Ascomycota) of southern South America, with notes on new records (including Aspiciliopsis macrophthalma), and a revised regional key to the species. Lichenologist 42: 727737.CrossRefGoogle Scholar
Galloway, D. J. (2011) Aspiciliopsis (Müll. Arg.) M. Choisy and Placopsis (Nyl.) Linds. (Trapeliaceae: Ascomycota) in Îles Kerguelen. Bibliotheca Lichenologica 106: 5767.Google Scholar
Galloway, D. J. (2013) The lichen genera Aspiciliopsis, and Placopsis (Trapeliales: Trapeliaceae: Ascomycota) in New Zealand. Phytotaxa 120: 1194.CrossRefGoogle Scholar
Giret, A., Grégoire, M., Cottin, J. Y. & Michon, G. (1997) Kerguelen, a third type of oceanic island? In The Antarctic Region: Geological Evolution and Processes (C. A. Ricci, ed.): 735741. Siena: Terra Antarctica Publication.Google Scholar
Harris, P. M. (1996) Competitive equivalence in a community of lichens on rock. Oecologia 108: 663668.Google Scholar
Hertel, H. (1970) Trapeliaceae – eine neue Flechtenfamilie. Deutsche Botanische Gesellschaft, Vorträge aus dem Gesamtgebiet der Botanik, Neue Folge 4: 171185.Google Scholar
Hestmark, G. (1997) Competitive behaviour of umbilicate lichens – an experimental approach. Oecologia 111: 523528.CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.Google Scholar
Huneck, S. & Yoshimura, I. (1996) Identification of Lichen Substances. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Jørgensen, P. M. (2000) Studies in the lichen family Pannariaceae IX. A revision of Pannaria subg. Chryopannaria. Nova Hedwigia 71: 405414.CrossRefGoogle Scholar
Jørgensen, P. M. (2001) Studies in the lichen family Pannariaceae X. The lichen genus Protopannaria in the subantarctic islands. Cryptogamie, Mycologie 22: 6772.Google Scholar
Kantvilas, G., Leavitt, S. D., Elix, J. A. & Lumbsch, H. T. (2014) Additions to the genus Trapelia (Trapeliaceae: lichenised Ascomycetes). Australian Systematic Botany 27: 395402.Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 30593066.Google Scholar
Lamb, I. M. (1974) The lichen genus Argopsis Th. Fr. Journal of the Hattori Botanical Laboratory 38: 447462.Google Scholar
Le Pogam, P., Legouin, B., Le Lamer, A.-C., Boustie, J. & Rondeau, D. (2015) Analysis of the cyanolichen Lichina pygmaea metabolites using in situ DART-MS: from detection to thermochemistry of mycosporine serinol. Journal of Mass Spectrometry 50: 454462.CrossRefGoogle ScholarPubMed
Lumbsch, H. T. (1997) Systematic studies in the suborder Agyriineae (Lecanorales). Journal of the Hattori Botanical Laboratory 83: 173.Google Scholar
Lumbsch, H. T., Schmitt, I., Mangold, A. & Wedin, M. (2007) Ascus types are phylogenetically misleading in Trapeliaceae and Agyriaceae (Ostropomycetidae, Ascomycota). Mycological Research 111: 11331141.CrossRefGoogle ScholarPubMed
Maddison, W. P. & Maddison, D. R. (2015) Mesquite: a modular system for evolutionary analysis. Version 3.04. Available from: http://mesquiteproject.org.Google Scholar
Massé, L. (1982) Pseudocyphellaria crocata Vain., lichen nouveau pour l'île de La Possession (archipel Crozet, Terres Australes et Antarctiques Françaises). Ecologie sommaire et intérêt biogéographique. Comité National Français des Recherches Antarctiques 51: 1723.Google Scholar
Mawson, D. (1934) The Kerguelen Archipelago. Geographical Journal 83: 1827.Google Scholar
Miadlikowska, J., McCune, B. & Lutzoni, F. (2002) Pseudocyphellaria perpetua, a new lichen from western North America. Bryologist 105: 110.CrossRefGoogle Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November, 2010, New Orleans, Louisiana, pp. 1–8.Google Scholar
Pentecost, A. (1980) Aspects of competition in saxicolous lichen communities. Lichenologist 12: 135144.CrossRefGoogle Scholar
Poelt, J. & Mayrhofer, H. (1988) Über Cyanotrophie bei Flechten. Plant Systematics and Evolution 158: 265281.Google Scholar
Posada, D. & Crandall, K. A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817818.CrossRefGoogle ScholarPubMed
Poulsen, R. S., Schmitt, I., Søchting, U. & Lumbsch, H. T. (2001) Molecular and morphological studies on the subantarctic genus Orceolina (Agyriaceae). Lichenologist 33: 323329.Google Scholar
Raggio, J., Green, T. G. A., Crittenden, P. D., Pintado, A., Vivas, M., Pérez-Ortega, S., De los Ríos, A. & Sancho, L. G. (2012) Comparative ecophysiology of three Placopsis species, pioneer lichens in recently exposed Chilean glacial forelands. Symbiosis 56: 5566.CrossRefGoogle Scholar
Rai, A. N., Söderbäck, E. & Bergman, B. (2000) Cyanobacterium-plant symbioses. New Phytologist 147: 449481.Google Scholar
Rambaut, A. (2012) FigTree v1.4.2. Available from: http://tree.bio.ed.ac.uk/software/figtree/ Google Scholar
Rambaut, A. & Drummond, A. J. (2007) Tracer v1.6. Available from: http://beast.bio.ed.ac.uk/ Google Scholar
Resl, P., Schneider, K., Westberg, M., Printzen, C., Palice, Z., Thor, G., Fryday, A., Mayrhofer, H. & Spribille, T. (2015) Diagnostics for a troubled backbone: testing topological hypotheses of trapelioid lichenized fungi in a large-scale phylogeny of Ostropomycetidae (Lecanoromycetes). Fungal Diversity 73: 239258.Google Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.Google Scholar
Sancho, L. G., Palacios, D., Green, T. G. A., Vivas, M. & Pintado, A. (2011) Extreme high lichen growth rates detected in recently deglaciated areas in Tierra de Fuego. Polar Biology 34: 813822.Google Scholar
Schmitt, I., Lumbsch, H. T. & Søchting, U. (2003) Phylogeny of the lichen genus Placopsis and its allies based on Bayesian analyses of nuclear and mitochondrial sequences. Mycologia 95: 827835.CrossRefGoogle ScholarPubMed
Schneider, K., Resl, P. & Spribille, T. (2016) Escape from the cryptic species trap: lichen evolution on both sides of a cyanobacterial acquisition event. Molecular Ecology 25: 34533468.CrossRefGoogle ScholarPubMed
Swofford, D. L. (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 42384246.Google Scholar
Walker, F. J. (1985) The lichen genus Usnea subgenus Neuropogon . Bulletin of the British Museum (Natural History), Botany Series 13: 1130.Google Scholar
Wallace, P. J., Frey, F. A., Weis, D. & Coffin, M. F. (2002) Origin and evolution of the Kerguelen Plateau, Broken Ridge and Kerguelen Archipelago: editorial. Journal of Petrology 43: 11051108.Google Scholar
Zahlbruckner, A. (1906) Die Flechten der Deutschen Südpolar-Expedition 1901–1903. In Deutsche Südpolar-Expedition 1901–03, in Auftrage des Reichsamtes des Innern, VIII, Botanik (E. von Drygalski, ed.): 1955; pl 3–5. Berlin: Druck und Verlag von Georg Reimer.Google Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.Google Scholar
Zwickl, D. J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, University of Texas at Austin.Google Scholar