Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T01:45:48.088Z Has data issue: false hasContentIssue false

Distinction of Cladonia rei and C. subulata based on molecular, chemical and morphological characteristics

Published online by Cambridge University Press:  03 June 2010

Christian DOLNIK
Affiliation:
Ecology Centre Kiel, University of Kiel, Olshausenstr. 40, D 24098 Kiel, Germany.
Andreas BECK
Affiliation:
Botanische Staatssammlung München, Menzinger Straße 67, D 80638 München, Germany: Email: [email protected]
Daria ZARABSKA
Affiliation:
Natural History Collection, Adam Mickiewicz University Poznan, Ul. Umultowska 89, 61-614 Poznan, Poland.

Abstract

Cladonia rei and Cladonia subulata are morphologically similar, but chemically different cup lichens of dry grasslands and nutrient-poor ruderal habitats. Recently, C. rei has been synonymized with C. subulata on the basis of combined morphological and chemical investigations. However, doubts remained due to a molecular divergent North American sample of C. rei compared to European C. subulata. To clarify the situation, using molecular methods, we analysed chemically different European samples of C. rei and C. subulata, as well as other morphologically or chemically similar Cladonia species. Molecular data show that European and North American samples of C. rei belong to the same clade, which is closely related to C. fimbriata and followed by a subclade with C. coniocraea and C. ochrochlora. The subclade of C. subulata appears to be distinct from C. rei. In concordance with molecular data, the presence of homosekikaic acid is the determining chemical feature for C. rei. In addition, C. humilis and C. innominata proved to be molecularly distinct species.

Type
Research Article
Copyright
Copyright © British Lichen Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahti, T. & Hammer, S. (2002) Cladonia. In Lichen Flora of the Greater Sonoran Desert Region. Vol. 1 (Nash, T. H. III, Ryan, B. D., Gries, C. & Bungartz, F., eds): 131158, Tempe: Lichens Unlimited, Arizona State University.Google Scholar
Archer, A. W. (1989) Two new lichens: Cladonia paeminosa and C. humilis var. bourgeanica. Muelleria 7: 15.CrossRefGoogle Scholar
Asahina, Y. (1938) Lichenologische Notizen (X). Über die Identität der Nemoxynsäure mit der Homosekikasäure. Japanese Journal of Botany 14: 251253.Google Scholar
Beck, A., Kasalicky, T. & Rambold, G. (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytologist 153: 317326.CrossRefGoogle Scholar
Biermann, R. (1999) Vegetationsökologische Untersuchungen der Corynephorus canescens-Vegetation der südlichen und östlichen Nordseeküste sowie der Kattegattinsel Læsø unter besonderer Berücksichtigung von Campylopus introflexus. Mitteilungen der Arbeitsgemeinschaft Geobotanik in Schleswig-Holstein und Hamburg 59: 1148.Google Scholar
Brodo, I. M., Sharnoff, S. D. & Sharnoff, S. (2001) Lichens of North America. New Haven and London: Yale University Press.Google Scholar
Coppins, B. J. & van den Boom, P. P. G. (1995) Micarea confusa: a new species from zinc- and cadmium-contaminated soils in Belgium and The Netherlands. Lichenologist 27: 8190.CrossRefGoogle Scholar
Cubero, O. F., Crespo, A., Fatehi, J. & Bridge, P. D. (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Systematics and Evolution 216: 243249.CrossRefGoogle Scholar
Culberson, C. F. (1986) Biogenetic relationships of the lichen substances in the framework of systematics. Bryologist 89: 9198.CrossRefGoogle Scholar
Culberson, C. F. & Ammann, K. (1979) Standardmethode zur Dünnschichtchromathographie von Flechtensubstanzen. Herzogia 5: 124.CrossRefGoogle Scholar
Culberson, C. F., Culberson, W. L. & Johnson, A. (1985) Orcinol-type depsides and depsidones in the lichens of the Cladonia chlorophaea group (Ascomycotina, Cladoniaceae). Bryologist 88: 380387.CrossRefGoogle Scholar
Culberson, C. F., Culberson, W. L. & Johnson, A. (1988) Gene flow in lichens. American Journal of Botany 75: 11351139.CrossRefGoogle Scholar
Cuny, D., Denayer, F.-O., de Foucault, B., Schumacker, R., Colein, P. & van Haluwyn, C. (2004): Patterns of metal soil contamination and changes in terrestrial cryptogamic communities. Environmental Pollution 129: 289297.CrossRefGoogle ScholarPubMed
DePriest, P. T. (1994) Variation in the Cladonia chlorophaea Complex II: ribosomal DNA variation in the Southern Appalachian population. Bryologist 97: 117126.CrossRefGoogle Scholar
Dolnik, C. (2005) Artenreichtum in Küsten-Sandtrockenrasen der Kurischen Nehrung und des Samlandes auf unterschiedlichen räumlichen Skalenebenen. In Trockenrasen auf unterschiedlichen Betrachtungsebenen – Observation scales in dry grasslands (Bültmann, H., Fartmann, T. & Hasse, T., eds): 8395. Havixbeck-Hohenholte: Wolf & Kreuels.Google Scholar
Dolnik, C. & Petrenko, D. E. (2003) Lichens of the Southern Curonian Spit in the Baltic Sea. Botanicheskii Zhurnal 88 (2): 4159.Google Scholar
Ernst, G. (1995) Vezdaea leprosa – Spezialist am Straßenrand. Herzogia 11: 175188.CrossRefGoogle Scholar
Fischer, P. (2003) Trockenrasen des Biosphärenreservates “Flusslandschaft Elbe”. Archiv Naturwissenschaftlicher Dissertationen 15: 1287. Nümbrecht: Martina Galunder–Verlag.Google Scholar
Goward, T. (1999) The Lichens of British Columbia, Illustrated Keys. Part 2 – Fruticose Species. Victoria BC: Crown Publications.Google Scholar
Günzl, B. & Fischer, P. (2004) Ein Beitrag zur Verbreitung der Chemotypen ausgewählter Cladonia-Arten. Aktuelle Lichenologische Mitteilungen N. F. 13: 2025.Google Scholar
Hadjúk, J. & Lisická, E. (1999) Cladonia rei (lichenized Ascomycotina) on heavy metal-contaminated habitats near copper smelters at Krompachy (NE Slovakia). Bulletin Slovenskej botanickej spoločnosti 21: 4951.Google Scholar
Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment 1 editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 9598.Google Scholar
Hammer, S. (1995) A synopsis of the genus Cladonia in the Northeastern United States. Bryologist 98: 128.CrossRefGoogle Scholar
Kowalewska, A., Kukwa, M., Ostrowska, I., Jabłonska, A. Oset, M. & Szok, J. (2008) The lichens of the Cladonia pyxidata-chlorophaea group and allied species in Poland. Herzogia 21: 6178.Google Scholar
Lamb, I. M. (1951) On the morphology, phylogeny, and taxonomy of the lichen genus Stereocaulon. Canadian Journal of Botany 29: 522584.CrossRefGoogle Scholar
Laundon, J. R. (1984) The typification of Withering's neglected lichens. Lichenologist 16: 211239.CrossRefGoogle Scholar
Lendemer, J. C. (2008) Studies in lichens and lichenicolous fungi: notes on some taxa from eastern North America. Mycotaxon 104: 325329.Google Scholar
Leuckert, C., Ziegler, H. & Poelt, J. (1971) Zur Problematik der Cladonia chlorophaea-Gruppe in Mitteleuropa. Nova Hedwigia 22: 505534.Google Scholar
Lumbsch, H. T. (1998): The use of metabolic data in lichenology at the species and subspecific levels. Lichenologist 30: 357367.CrossRefGoogle Scholar
Myllys, L., Lohtander, K., Källersjö, M. & Tehler, A. (1999) Applicability of ITS data in Rocellaceae (Arthoniales, Euascomycetes) phylogeny. Lichenologist 31: 461476.CrossRefGoogle Scholar
Myllys, L., Stenroos, S., Thell, A. & Ahti, T. (2003) Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Molecular Phylogenetics and Evolution 27: 5869.CrossRefGoogle ScholarPubMed
Østhagen, H. (1976) Nomenclatural note on Cladonia nemoxyna. Bryologist 79: 242246.CrossRefGoogle Scholar
Ozenda, P. & Clauzade, G. (1970) Les Lichens – Étude Biologique et Flore Illustrée. Paris: Masson.Google Scholar
Paus, S. M. (1997) Die Erdflechtenvegetation Nordwestdeutschlands und einiger Randgebiete. Bibliotheca Lichenologica 66: 1222.Google Scholar
Paus, S., Daniels, F. & Lumbsch, T. (1993) Chemical and ecological studies in the Cladonia subulata complex in Northern Germany (Cladoniaceae, lichenised Ascomycotina). Bibliotheca Lichenologica 53: 191200.Google Scholar
Posada, D. & Crandall, K. A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817818.CrossRefGoogle ScholarPubMed
Rogers, S. O. & Bendich, A. J. (1985). Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology 5:6976.CrossRefGoogle ScholarPubMed
Sandstede, H. (1931) Die Gattung Cladonia. In Rabenhost's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz (Zahlbruckner, A., ed). Vol. 9 (4,2). Leipzig: Akademische Verlagsgesellschaft.Google Scholar
Sipman, H. J. M. (1973) The Cladonia pyxidata-fimbriata complex in The Netherlands, with description of a new variety. Acta Botanica Neerlandica 22: 490502.CrossRefGoogle Scholar
Spier, L. & Aptroot, A. (2007) Cladonia rei is a chemotype and synonym of Cladonia subulata. Lichenologist 39: 5760.CrossRefGoogle Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.CrossRefGoogle ScholarPubMed
Stenroos, S., Hyvönen, J., Myllys, L., Thell, A. & Ahti, T. (2002) Phylogeny of the genus Cladonia s. lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics 18: 237278.CrossRefGoogle ScholarPubMed
Suominen, J. & Ahti, T. (1966) The occurrence of the lichens Cladonia nemoxyna, C. glauca and C. polycarpoides in Finland. Annales Botanici Fennici 3: 418423.Google Scholar
Swofford, D. L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Syrek, M. & Kukwa, M. (2008) Taxonomy of the lichen Cladonia rei and its status in Poland. Biologia 63: 493497.CrossRefGoogle Scholar
Tretiach, M., Muggia, L. & Bauffo, L. (2009) Species delimination in the Lepraria isidiata-L. santosii group: a population study in the Mediterranean-Macronesian region. Lichenologist 41: 115.CrossRefGoogle Scholar
Tønsberg, T. (1985) Notes on Cladonia asahinae, C. conista and the C. grayi-group in Norway. Gunneria 51: 126.Google Scholar
van Herk, K. & Aptroot, A. (2004) Veldgids Korstmossen. Utrecht: KNNV Uitgeverij.Google Scholar
Vainio, E. A. (1887) Monographia Cladoniarum Universalis. Helsingforsiae: J. Simelii.Google Scholar
Vondrák, J., Říha, P., Arup, U. & Søchting, U. (2009) The taxonomy of the Caloplaca citrina group (Teloschistaceae) in the Black Sea region; with contributions to the cryptic species concept in lichenology. Lichenologist 41: 571604.CrossRefGoogle Scholar
White, T. J., Bruns, T. D., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J., eds). San Diego: Academic Press.Google Scholar
Wirth, V. (1994) Checkliste der Flechten und flechtenbewohnenden Pilze Deutschlands – eine Arbeitshilfe. Stuttgarter Beiträge zur Naturkunde, Serie A (Biologie) 517: 163.Google Scholar
Zharkikh, A. (1994) Estimation of evolutionary distances between nucleotide sequences. Journal of Molecular Evolution 39: 315329.CrossRefGoogle ScholarPubMed
Zopf, W. (1908) Beiträge zu einer chemischen Monographie der Cladoniaceen. Berichte der Deutschen Botanischen Gesellschaft 36: 51113.Google Scholar