Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T16:05:54.782Z Has data issue: false hasContentIssue false

Acetone washing for the removal of lichen substances affects membrane permeability

Published online by Cambridge University Press:  24 July 2017

Fabio CANDOTTO CARNIEL
Affiliation:
Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, I-34127, Trieste, Italy. Email: [email protected]
Elisa PELLEGRINI
Affiliation:
Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
Federica BOVE
Affiliation:
Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, I-34127, Trieste, Italy. Email: [email protected]
Matteo CROSERA
Affiliation:
Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via L. Giorgieri, 1, I-34127, Trieste, Italy
Gianpiero ADAMI
Affiliation:
Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via L. Giorgieri, 1, I-34127, Trieste, Italy
Cristina NALI
Affiliation:
Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
Giacomo LORENZINI
Affiliation:
Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
Mauro TRETIACH
Affiliation:
Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, I-34127, Trieste, Italy. Email: [email protected]

Abstract

Removing lichen substances from dry lichen thalli using pure acetone is the least detrimental method. Measurements of properties strictly related to the photobiont, such as chlorophyll a fluorescence (ChlaF), are frequently used to verify acetone toxicity but they cannot reveal possible damage accumulated at the whole thallus level. Here, measurements of ChlaF have been integrated with others concerning the status of cell membranes and photobiont population (potassium leakage, malondialdehyde and photosynthetic pigment content). Dry thalli of Flavoparmelia caperata, Parmotrema perlatum and Xanthoria parietina were subjected to sequential acetone washings according to standard protocols. Membrane permeability was assessed before and after the washing treatment, and after a recovery period of 48 hours. Measurements of ChlaF were taken in a parallel experiment. Acetone washings increased potassium leakage in all the species from 3·9 to 6·6 times greater than the control level. After recovery, only P. perlatum returned to the control level. ChlaF was affected only in F. caperata, with a 20% decrease in Fv/Fm which had not fully recovered after 48 hours. There was neither an increase in lipid peroxidation of membranes nor a change in the photosynthetic pigment content. The sensitivity of F. caperata to this method and the impact of the results on its future application are discussed.

Type
Articles
Copyright
© British Lichen Society, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asplund, J. & Gauslaa, Y. (2008) Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests. Oecologia 155: 9399.CrossRefGoogle ScholarPubMed
Asplund, J. & Wardle, D. A. (2013) The impact of secondary compounds and functional characteristics on lichen palatability and decomposition. Journal of Ecology 101: 689700.Google Scholar
Asplund, J., Bokhorst, S. & Wardle, D. A. (2013) Secondary compounds can reduce the soil micro-arthropod effect on lichen decomposition. Soil Biology and Biochemistry 66: 1016.CrossRefGoogle Scholar
Bačkor, M., Hudàk, J., Repčák, M., Ziegler, W. & Bačkorova, M. (1998) The influence of pH and lichen metabolites (vulpinic acid and (+) usnic acid) on the growth of the lichen photobiont Trebouxia irregularis . Lichenologist 30: 577582.Google Scholar
Bačkor, M., Klemová, K., Bačkorová, M. & Ivanova, V. (2010) Comparison of the phytotoxic effects of usnic acid on cultures of free-living alga Scenedesmus quadricauda and aposymbiotically grown lichen photobiont Trebouxia erici . Journal of Chemical Ecology 36: 405411.Google Scholar
Baruffo, L. & Tretiach, M. (2007) Seasonal variations of F o, F m, and F v /F m in an epiphytic population of the lichen Punctelia subrudecta (Nyl.) Krog. Lichenologist 39: 555565.CrossRefGoogle Scholar
Bidussi, M., Gauslaa, Y. & Solhaug, K. A. (2013) Prolonging the hydration and active metabolism from light periods into nights substantially enhances lichen growth. Planta 237: 13591366.Google Scholar
Brown, D. H. & Buck, G. W. (1979) Desiccation effects and cation location in bryophytes. New Phytologist 82: 115125.Google Scholar
Buck, G. W. & Brown, D. H. (1979) The effect of desiccation on cation location in lichens. Annals of Botany 44: 265277.Google Scholar
Bud’ova, J., Bačkor, M., Bačkorová, M. & Zidzik, J. (2006) Usnic acid and copper toxicity in aposymbiotically grown lichen photobiont Trebouxia erici . Symbiosis 42: 169174.Google Scholar
Culberson, C. F. (1972) Improved conditions and new data for identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography A 72: 113125.Google Scholar
Gasulla, F., vom Dorp, K., Dombrink, I., Zahringer, U., Gisch, N., Dörmann, P. & Bartels, D. (2013) The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: a comparative approach. Plant Journal 75: 726741.CrossRefGoogle ScholarPubMed
Gasulla, F., Barreno, E., Parages, M. L., Cámara, J., Jiménez, C., Dörmann, P. & Bartels, D. (2016) The role of phospholipase D and MAPK signaling cascades in the adaption of lichen microalgae to desiccation: changes in membrane lipids and phosphoproteome. Plant and Cell Physiology 57: 19081920.Google Scholar
Gauslaa, Y. (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143: 94105.CrossRefGoogle ScholarPubMed
Heath, R. L. & Packer, L. (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189198.Google Scholar
Honegger, R. (1991) Functional aspects of the lichen symbiosis. Annual Review of Plant Biology 42: 553578.Google Scholar
Huneck, S. (2001) New results on the chemistry of lichen substances. In Fortschritte der Chemie organischer Naturstoffe: Progress in the Chemistry of Organic Natural Products (W. Herz, H. Falk, G. W. Kirby & R. E. Moore, eds): 1276. Wien: Springer.Google Scholar
Ingólfsdóttir, K., Chung, G. A. C., Skúlason, V. G., Gissurarson, S. R. & Vilhelmsdóttir, M. (1998) Antimycobacterial activity of lichen metabolites in vitro. European Journal of Pharmaceutical Sciences 6: 141144.CrossRefGoogle ScholarPubMed
Jamur, M. C. & Oliver, C. (2010) Permeabilization of cell membranes. In Methods in Molecular Biology. Immunocytochemical Methods and Protocols (C. Oliver & M. C. Jamur, eds): 6366. New York: Springer.Google Scholar
Kranner, I., Cram, J. W., Zorn, M., Yoshimura, I., Stabentheiner, E. & Pfeifhofer, H. W. (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proceedings of the National Academy of Sciences of the United State of America 102: 31413146.CrossRefGoogle Scholar
Kranner, I., Beckett, R. P., Hochman, A. & Nash, T. H. III (2008) Desiccation tolerance in lichens: a review. Bryologist 111: 576593.Google Scholar
Lange, O. L., Green, T. G. A., Reichenberger, H., Hesbacher, S. & Proksch, P. (1997) Do secondary substances in the thallus of a lichen promote CO2 diffusion and prevent depression of net photosynthesis at high water content? Oecologia 112: 13.Google Scholar
Larsson, P., Večeřová, K., Cempírková, H., Solhaug, K. A. & Gauslaa, Y. (2009) Does UV-B influence biomass growth in lichens deficient in sun-screening pigments? Environmental and Experimental Botany 67: 215221.Google Scholar
Lawrey, J. D. (1986) Biological roles of lichen substances. Bryologist 89: 111122.Google Scholar
Lawrey, J. D. (2009) Chemical defense in lichen symbioses. In Defensive Mutualism in Microbial Symbiosis. Mycology Vol. 27 (J. F. White & M. S. Torres, eds): 167181. Boca Raton: CRC Press.Google Scholar
Lazár, D. & Nauš, J. (1998) Statistical properties of chlorophyll fluorescence induction parameters. Photosynthetica 35: 121127.CrossRefGoogle Scholar
Louwhoff, S. H. J. J. (2009) Flavoparmelia Hale. In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James & P. A. Wolseley, eds): 403404. London: British Lichen Society.Google Scholar
Nybakken, L., Helmersen, A. M., Gauslaa, Y. & Selås, V. (2010) Lichen compounds restrain lichen feeding by bank voles (Myodes glareolus). Journal of Chemical Ecology 36: 298304.Google Scholar
Pfeifhofer, H. W., Willfurth, R., Zorn, M. & Kranner, I. (2002) Analysis of chlorophylls, carotenoids and tocopherols in lichens. In Protocols in Lichenology: Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring (I. Kranner, R. P. Beckett & A. Varma, eds): 363378. Berlin: Springer.Google Scholar
Pöykkö, H., Hyvärinen, M. & Bačkor, M. (2005) Removal of lichen secondary metabolites affects food choice and survival of lichenivorous moth larvae. Ecology 86: 26232632.Google Scholar
Solhaug, K. A. & Gauslaa, Y. (1996) Parietin, a photoprotective secondary product of the lichen Xanthoria parietina . Oecologia 108: 412418.CrossRefGoogle ScholarPubMed
Solhaug, K. A. & Gauslaa, Y. (2001) Acetone rinsing: a method for testing ecological and physiological roles of secondary compounds in living lichens. Symbiosis 30: 301315.Google Scholar
Solhaug, K. A. & Gauslaa, Y. (2004) Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina . Plant Cell and Environment 27: 167176.Google Scholar
Solhaug, K. A., Gauslaa, Y., Nybakken, L. & Bilger, W. (2003) UV-induction of sun-screening pigments in lichens. New Phytologist 158: 91100.CrossRefGoogle Scholar
Tretiach, M., Piccotto, M. & Baruffo, L. (2007) Effect of ambient NOx on chlorophyll a fluorescence in transplanted Flavoparmelia caperata (Lichen). Environmental Science and Technology 46: 29782984.Google Scholar
Supplementary material: PDF

Candotto Carniel supplementary material

Figure S1

Download Candotto Carniel supplementary material(PDF)
PDF 163 KB