Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T07:59:23.216Z Has data issue: false hasContentIssue false

Acetone rinsing tolerance of the lichen species Cladonia foliacea is considerable

Published online by Cambridge University Press:  29 July 2020

Edit Farkas*
Affiliation:
Laboratory for Lichenology and Phytochemistry, Institute of Ecology and Botany, MTA Centre for Ecological Research, Hungarian Academy of Sciences, H-2163 Vácrátót, Alkotmány u. 2–4, Hungary
Bernadett Biró
Affiliation:
Laboratory for Lichenology and Phytochemistry, Institute of Ecology and Botany, MTA Centre for Ecological Research, Hungarian Academy of Sciences, H-2163 Vácrátót, Alkotmány u. 2–4, Hungary
Zsolt Csintalan
Affiliation:
Institute of Botany and Ecophysiology, Szent István University, H-2100 Gödöllő, Páter K. u. 1, Hungary
Katalin Veres
Affiliation:
Laboratory for Lichenology and Phytochemistry, Institute of Ecology and Botany, MTA Centre for Ecological Research, Hungarian Academy of Sciences, H-2163 Vácrátót, Alkotmány u. 2–4, Hungary Institute of Botany and Ecophysiology, Szent István University, H-2100 Gödöllő, Páter K. u. 1, Hungary
*
Author for correspondence: Edit Farkas. E-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Short Communications
Copyright
Copyright © British Lichen Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arup, U, Ekman, S, Lindblom, L and Mattsson, J-E (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25, 6171.CrossRefGoogle Scholar
Borhidi, A (1961) Klimadiagramme und klimazonale Karte Ungarns. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae, Sectio Biológia 4, 2150.Google Scholar
Borhidi, A, Kevey, B and Lendvai, G (2012) Plant Communities of Hungary. Budapest: Akadémiai Kiadó.Google Scholar
Candotto Carniel, F, Pellegrini, E, Bove, F, Crosera, M, Adami, G, Nali, C, Lorenzini, G and Tretiach, M (2017) Acetone washing for the removal of lichen substances affects membrane permeability. Lichenologist 49, 387395.CrossRefGoogle Scholar
Cocchietto, M, Skert, N, Nimis, PL and Sava, G (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89, 137146.CrossRefGoogle ScholarPubMed
Duong, TH, Huynh, BLC, Chavasiri, W, Chollet-Krugler, M, Nguyen, VK, Nguyen, THT, Hansen, PE, Le Pogam, P, Thüs, H, Boustie, J, et al. (2017) New erythritol derivatives from the fertile form of Roccella montagnei. Phytochemistry 137, 156164.CrossRefGoogle ScholarPubMed
Farkas, E, Biró, B, Szabó, K, Veres, K, Csintalan, Z and Engel, R (2020) The amount of lichen secondary metabolites in Cladonia foliacea (Cladoniaceae, lichenised Ascomycota). Acta Botanica Hungarica 62, 3348.CrossRefGoogle Scholar
Feige, B, Lumbsch, HT, Huneck, S and Elix, JA (1993) Identification of lichen substances by a standardized high-performance liquid chromatographic method. Journal of Chromatography 646, 417427.CrossRefGoogle Scholar
Galloway, DJ (1993) Global environmental change: lichens and chemistry. Bibliotheca Lichenologica 53, 8795.Google Scholar
Gauslaa, Y, Alam, MdA, Lucas, P-L, Chowdhury, DP and Solhaug, KA (2017) Fungal tissue per se is stronger as a UV-B screen than secondary fungal extrolites in Lobaria pulmonaria. Fungal Ecology 26, 109113.CrossRefGoogle Scholar
Hillmann, J and Grummann, V (1957) Kryptogamenflora der Mark Brandenburg und Angrenzender Gebiete. Band VIII: Flechten. Berlin-Nikolassee: Gebrüder Borntraeger.Google Scholar
Huneck, S and Yoshimura, I (1996) Identification of Lichen Substances. Berlin, Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Latkowska, E, Bober, B, Chrapusta, E, Adamski, M, Kaminski, A and Bialczyk, J (2015) Secondary metabolites of the lichen Hypogymnia physodes (L.) Nyl. and their presence in spruce (Picea abies (L) H. Karst.) bark. Phytochemistry 118, 116123.CrossRefGoogle ScholarPubMed
Molnár, K and Farkas, E (2010) Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforschung C 65, 157173.CrossRefGoogle ScholarPubMed
Molnár, K and Farkas, E (2011) Depsides and depsidones in populations of the lichen Hypogymnia physodes and its genetic diversity. Annales Botanici Fennici 48, 473482.CrossRefGoogle Scholar
Moya, P, Škaloud, P, Chiva, S, García-Breijo, FJ, Reig-Armiñana, J, Vančurová, L and Barreno, E (2015) Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Islands ecosystems. International Journal of Systematic and Evolutionary Microbiology 65, 18381854.CrossRefGoogle ScholarPubMed
Neupane, BP, Malla, KP, Gautam, A, Chaudhary, D, Paudel, S, Timsina, S and Jamarkattel, N (2017) Elevational trends in usnic acid concentration of lichen Parmelia flexilis in relation to temperature and precipitation. Climate 5, 40.CrossRefGoogle Scholar
Orange, A, James, PW and White, FJ (2010) Microchemical Methods for the Identification of Lichens, 2nd edn. London: British Lichen Society.Google Scholar
Peksa, O and Škaloud, P (2008) Changes in chloroplast structure in lichenized algae. Symbiosis 46, 153160.Google Scholar
R Core Team (2013) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [WWW resource] URL http://www.R-project.org/.Google Scholar
Škaloud, P and Peksa, O (2008) Comparative study of chloroplast morphology and ontogeny in Asterochloris (Trebouxiophyceae, Chlorophyta). Biologia 63, 873880.CrossRefGoogle Scholar
Smith, CW, Aptroot, A, Coppins, BJ, Fletcher, A, Gilbert, OL, James, PW and Wolseley, PA (eds) (2009) The Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Solhaug, KA (2018) Low-light recovery effects on assessment of photoinhibition with chlorophyll fluorescence in lichens. Lichenologist 50, 139145.CrossRefGoogle Scholar
Solhaug, KA and Gauslaa, Y (1996) Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108, 412418.CrossRefGoogle ScholarPubMed
Solhaug, KA and Gauslaa, Y (2001) Acetone rinsing – a method for testing ecological and physiological roles of secondary compounds in living lichens. Symbiosis 30, 301315.Google Scholar
Solhaug, KA and Gauslaa, Y (2004) Photosynthates stimulate the UV-B induced fungal anthraquinones synthesis in the foliose lichen Xanthoria parietina. Plant, Cell and Environment 27, 167176.CrossRefGoogle Scholar
Wirth, V, Hauck, M and Schultz, M (2013) Die Flechten Deutschlands. Stuttgart: Ulmer Verlag.Google Scholar
Yilmaz, M, Turk, AO, Tay, T and Kıvanc, M (2004) The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (–)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Zeitschrift für Naturforschung C 59, 249254.CrossRefGoogle ScholarPubMed