Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T02:41:51.389Z Has data issue: false hasContentIssue false

14C/C measurements support Andreev's internode method to determine lichen growth rates in Cladonia stygia (Fr.) Ruoss

Published online by Cambridge University Press:  18 November 2008

Graham BENCH
Affiliation:
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.

Abstract

Growth rates and the ability to date an organism can greatly contribute to understanding its population biology and community dynamics. 1n 1954, V. N. Andreev proposed a method to date regularly branched members of Cladonia, a fruticose lichen, using total thallus length and number of internodes. No research, however, has demonstrated the reliability of this technique or compared its estimates to those derived by other means. In this study, we demonstrate the utility of 14C/C ratios to determine lichen age and growth rate in Cladonia stygia (Fr.) Ruoss collected from north-western Alaska, USA. The average growth rate using 14C/C ratios was 6·5 mm yr−1, which was not significantly different from growth rates derived by Andreev's internode method (average = 6·2 mm yr−1); thus, suggesting the reliability of Andreev's simple field method for dating lichens.

Type
Research Article
Copyright
Copyright © British Lichen Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

342 East 200 North, Logan, UT 84321-4103, USA. Email: [email protected]

References

Ahti, T. (1959) Studies on the caribou lichen stands of Newfoundland. Annales Botanici Societatis Zoologicae Botanicae Fennicae Vanamo 30: 144.Google Scholar
Ahti, T. & Hyvönen, S. (1985) Cladina stygia, a common, overlooked species of reindeer lichen. Annales Botanici Fennicae 22: 223229.Google Scholar
Andreev, V. N. (1954) The growth of forage lichens and the methods for their regulation. Proceeds of the Komarov Botanical Institute, Series III, Geobotanika 9: 1174 (translated from Russian as Canadian Wildlife Service translation CSW-TR-RUS-213).Google Scholar
Armstrong, R. A. (1973) Seasonal growth and growth rate-colony size relationships in six species of saxicolous species. New Phytologist 72: 10231030.CrossRefGoogle Scholar
Armstrong, R. A. (1983) Growth of the lichen Rhizocarpon geographicum. New Phytologist 94: 619622.CrossRefGoogle Scholar
Armstrong, R. A. (1993) Factors determining lobe growth in foliose lichen thalli. New Phytologist 124: 675679.CrossRefGoogle ScholarPubMed
Armstrong, R. A. (2005) Radial growth of Rhizocarpon Section Rhizocarpon lichen thalli over six years at Snoqualmie Pass in the Cascade Range, Washington State. Arctic, Antarctic and Alpine Research 37: 411415.CrossRefGoogle Scholar
Bench, G., Clark, B. M., Mangelson, N. F., St. Clair, L. L., Rees, L. B., Grant, P. G. & Southon, J. R. (2001) Accurate lifespan estimates cannot be obtained from 14C profiles in the crustose lichen Rhizocarpon geographicum (L.) DC. Lichenologist 33: 539542.CrossRefGoogle Scholar
Bench, G., Clark, B. M., Mangelson, N. F., St. Clair, L. L., Rees, L. B., Grant, P. G. & Southon, J. R. (2002) Use of 14C/12C ratios to provide insights into the magnitude of carbon turnover in the crustose saxicolous lichen Caloplaca trachyphylla. Lichenologist 34: 169180.CrossRefGoogle Scholar
Benedict, J. B. (1990) Experiments on lichen growth. I. Seasonal patterns and environmental controls. Arctic and Alpine Research 22: 244254.CrossRefGoogle Scholar
Benedict, J. B. (1991) Experiments on lichen growth. II. Effects of a seasonal snow cover. Arctic and Alpine Research 23: 189199.CrossRefGoogle Scholar
Boudreau, S. & Payette, S. (2004) Growth performance of Cladina stellaris following caribou disturbance in subarctic Quebec. Ecoscience 11: 347355.CrossRefGoogle Scholar
Clark, B. M., Mangelson, N. F., St. Clair, L. L., Rees, L. B., Bench, G. S. & Southon, J. R. (2000) Measurement of age and growth rate in the crustose saxicolous lichen Caloplaca trachyphylla using 14C accelerator mass spectrometry. Lichenologist 32: 399403.CrossRefGoogle Scholar
Clark, B. M. (2001) A study of lichens using nuclear microscopy, scanning electron microscopy, and 14C accelerator mass spectrometry. Ph. D thesis, Brigham Young University, Provo, UT, US.Google Scholar
Hemming, J. E. (1969) Cemental deposition, tooth succession, and horn development as criteria of age in Dall Sheep. Journal of Wildlife Management 33: 552558.CrossRefGoogle Scholar
Hyvärinen, M. & Crittenden, P. D. (1998) Growth of the cushion-forming lichen, Cladonia portentosa, at nitrogen-polluted and unpolluted heathland sites. Environmental and Experimental Botany 40: 6776.CrossRefGoogle Scholar
Innes, J. L. (1985) Lichenometry. Progress in Physical Geography 9: 187254.CrossRefGoogle Scholar
Karenlampi, L. (1970) Morphological analysis of the growth and productivity of the lichen Cladonia alpestris. Reports from the Kevo Subarctic Research Station 7: 915.Google Scholar
Karenlampi, L. (1971) Studies on the relative growth rate of some fruticose lichens. Reports from the Kevo Subarctic Research Station 7: 3339.Google Scholar
Keon, D. B. & Muir, P. S. (2002) Growth of Usnea longissima across a variety of habitats in the Oregon Coast Range. Bryologist 105: 233242.CrossRefGoogle Scholar
Kytöviita, M.-M. & Crittenden, P. D. (2002) Seasonal variation in growth rates in Stereocaulon paschale. Lichenologist 34: 533537.CrossRefGoogle Scholar
Lechowicz, M. J. (1981) The effects of climatic pattern on lichen productivity: Cetraria cucullata (Bell.) Ach. in the arctic tundra of northern Alaska. Oecologia 50: 210216.CrossRefGoogle Scholar
Lechowicz, M. J. (1983) Age dependence of photosynthesis in the caribou lichen Cladina stellaris. Plant Physiology 71: 893895.CrossRefGoogle ScholarPubMed
Levin, I. & Kromer, B. (2004) The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46: 12611272.CrossRefGoogle Scholar
McCarthy, D. P. (1999) A biological basis for lichenometry? Journal of Biogeography 26: 379386.CrossRefGoogle Scholar
McCune, B., Derr, C. C., Muir, P. S., Shirazi, A., Sillett, S. C. & Daly, W. J. (1996) Lichen pendants for transplant and growth experiments. Lichenologist 28: 161169.CrossRefGoogle Scholar
McLaughlin, S. B., Downing, D. J., Blasing, T. J., Cook, E. R. & Adams, H. S. (1987) An analysis of climate and competition as contributors todecline of red spruce in high elevation Appalachian forests of the Eastern United States. Oecologia 72: 487501.CrossRefGoogle ScholarPubMed
Miller, G. H. (1973) Variations in lichen growth from direct measurements: preliminary curves for Alectoria sarmentosa from eastern Baffin Island, NWT, Canada. Arctic and Alpine Research 5: 333339.CrossRefGoogle Scholar
Pannella, G. (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173: 11241127.CrossRefGoogle Scholar
Peck, J. E., Ford, J., McCune, B. & Daly, B. (2000) Tethered transplants for estimating biomass growth rates of the arctic lichen Masonhalea richardsonii. Bryologist 103: 449454.CrossRefGoogle Scholar
Pegau, R. E. (1968) Growth rates of important reindeer forage lichens on the Seward Peninsula, Alaska. Arctic 21: 255259.CrossRefGoogle Scholar
Perlmutter, G. B. (2005) Lichen checklist for North Carolina, USA. Evansia 22: 5177.CrossRefGoogle Scholar
Prince, C. R. (1973) Growth rates and productivity of Cladonia arbuscula and Cladonia impexa on the Sands of Forvie, Scotland. Canadian Journal of Botany 52: 431433.CrossRefGoogle Scholar
Reimer, P. J., Brown, T. A. & Reimer, R. W. (2004) Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46: 12991304.Google Scholar
Salazkin, A. S. (1937) The speed of growth of forage lichens. The Soviet Reindeer Industry 11: 4354.Google Scholar
Scotter, G. W. (1963) Growth rates of Cladonia alpestris, C. mitis, and C. rangiferina in the Taltson River region, NWT. Canadian Journal of Botany 41: 11991202.CrossRefGoogle Scholar
Solomina, O. & Calkin, P. E. (2003) Lichenometry as applied to moraines in Alaska, USA, and Kamchatka, Russia. Arctic, Antarctic and Alpine Research 35: 129143.CrossRefGoogle Scholar
Southon, J. R., Caffee, M. W., Davis, J. C., Moore, T. L., Proctor, I. D., Schumacher, B. & Vogel, J. S. (1990) The new LLNL AMS spectrometer. Nuclear Instruments and Methods B52: 301305.CrossRefGoogle Scholar
Steen, E. (1965) Reindeer grazing problems. Acta Phytogeographa Suecica 50: 281284.Google Scholar
Stenroos, S., Hyvönon, J., Myllys, L., Thell, A. & Ahti, T. (2002) Phylogeny of the genus Cladonia s. lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological and chemical data. Cladistics 18: 237278.CrossRefGoogle ScholarPubMed
Vasander, H. (1981) The length growth rate, biomass and production of Cladonia arbuscula and C. rangiferina in a raised bog in southern Finland. Annales Botanici Fennicae 18: 237243.Google Scholar
Vogel, J. S., Southon, J. R., Nelson, D. E. & Brown, T. A. (1984) Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods B5: 289293.CrossRefGoogle Scholar
Yarranton, G. A. (1975) Population growth in Cladonia stellaris (Opiz.) Pouz.and Vezda. New Phytologist 75: 99110.CrossRefGoogle Scholar