Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T15:45:48.475Z Has data issue: false hasContentIssue false

¿Existen brechas salariales por género en Chile?: Descomposición de las diferencias salariales entre hombres y mujeres en el contexto de regresiones por cuantiles

Published online by Cambridge University Press:  05 September 2022

Marcela Perticara
Affiliation:
ILADES, Universidad Alberto Hurtado
Alvaro Astudillo
Affiliation:
Instituto Nacional de Estadísticas (INE) de Chile
Rights & Permissions [Opens in a new window]

Resumen

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Este trabajo busca evaluar las brechas de salarios entre hombres y mujeres a partir de regresiones de cuantiles, utilizando los datos de la Encuesta de Protección Social 2002–2006. Las estimaciones realizadas toman en cuenta la potencial endogeneidad de la variable educación y se incluyen controles de experiencia laboral efectiva.

Se encuentra que el efecto características es pequeño y estadísticamente no significativo hasta aproximadamente el quintil 50 (mediana), donde se hace positivo (favorable a las mujeres) y crece monotónicamente hasta llegar a 12 por ciento en el percentil 90. El efecto parámetro (o componente no explicado) es siempre negativo a lo largo de toda la distribución. Notablemente, no encontramos un efecto techo en el mercado laboral chileno una vez que controlamos por la potencial endogeneidad de la variable educación. Las estimaciones intra-ocupación revelan que las mayores brechas de salarios se encuentran entre trabajadores del comercio y obreros y trabajadores agrícolas calificados.

Abstract

Abstract

In this article, we use quantile regression decomposition methods to analyze the gender gap between men and women in Chile. The data used are drawn from the Social Protection Survey, 2002–2006. In our estimations, we control for actual labor market experience and use an instrumental variable to deal with the potential endogeneity bias in the education variable. Our decompositions show that most of the gender log wage gap is a result of differences between men and women in terms of the rates of return to labor market characteristics rather than a result of differences in those characteristics themselves. Moreover, the characteristics effect is small and not statistically different from zero until the 50th quantile, where the effect becomes positive and increases monotonically until it reaches 12 percent at the 90th quantile. However, the parameter effect is always negative throughout the distribution. Surprisingly, the glass-ceiling effect vanished after we used the instrumental variable for education. We also find that the wage gaps are higher among sales workers and qualified agricultural workers.

Type
Research Notes
Copyright
Copyright © 2010 by the Latin American Studies Association

Footnotes

Los autores agradecen el financiamiento del Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) de Chile a través del proyecto N° 11060204 “Evaluación de las Brechas Salariales entre Hombres y Mujeres en Chile”.

References

Referencias

Albrecht, James, Vuuren, Aico van y Vroman, Susan 2006Counterfactual Distributions with Sample Selection Adjustments: Econometric Theory and an Application to the Netherlands”. Mimeo, 52.Google Scholar
Amemiya, Takeshi 1982Two Stage Least Absolute Deviations Estimators”. Econometrica 50 (3): 689711.CrossRefGoogle Scholar
Autor, David, Katz, Lawrence y Kearney, Melissa 2005Rising Wage Inequality: The Role of Composition and Prices”. Working Paper, Massachusetts Institute of Technology.CrossRefGoogle Scholar
Blinder, Alan 1973Wage Discrimination: Reduced Form and Structural Estimates”. Journal of Human Resources 8 (4): 436455.CrossRefGoogle Scholar
Bravo, David; Claudia Sanhueza y Urzúa, Sergio 2008aAbility, Schooling Choices and Gender Labor Market Discrimination: Evidence for Chile”. Washington, D.C.: IADB, Research Network Working Paper #R-558, 42.CrossRefGoogle Scholar
Bravo, David; Claudia Sanhueza y Urzúa, Sergio 2008bIs There Labor Discrimination among Professionals in Chile? Lawyers, Doctors and Business-People”. Washington, D.C.: IADB, Research Network Working Paper #R-545, 32.CrossRefGoogle Scholar
Buchinsky, Moshe 1994Changes in US Wage Structure 1963–87: An Application of Quantile Regression”. Econometrica 62:405458.CrossRefGoogle Scholar
Chernozhukov, Victor, Val, Ivan Fernandez y Melly, Blaise 2008Inference on Contrafactual Distributions”. Mimeo, 50.CrossRefGoogle Scholar
Fitzenberger, Bernd, Koenker, Roger y Machado, Jose, eds. 2002 Economic Applications of Quantile Regressions. Heidelberg: Physica-Verlag.CrossRefGoogle Scholar
Gill, Indermit, y Montenegro, Claudio 2002Responding to Earning Differentials in Chile”. En Crafting Labor Policy: Techniques and Lessons from Latin America, editado por Indermit Gill, Claudio Montenegro y Dorte Dormeland. Washington D.C.: World Bank.CrossRefGoogle Scholar
Koenker, Roger, y Bassett, Gilbert 1978Regression Quantiles”. Econometrica 46 (1): 3350.CrossRefGoogle Scholar
Koenker, Roger, y Portnoy, Stephen 1987L-Estimation for Linear Models”. Journal of the American Statistical Association 82:851857.Google Scholar
Machado, José, y Mata, José 2005Counterfactual decomposition of changes in wage distributions using quantile regression”. Journal of Applied Econometrics 20 (4): 445465.CrossRefGoogle Scholar
Melly, Blaise 2005Decomposition of Differences in Distribution Using Quantile Regression”. Labour Economics 12 (4): 577590.CrossRefGoogle Scholar
Melly, Blaise 2006 “Estimation of Counterfactual Distributions Using Quantile Regression”. Swiss Institute for International Economics and Applied Economic Research (SIAW), University of St. Gallen, 50 p.Google Scholar
Ministerio de Trabajo y Previsión Social de Chile (Chile) 2005 “Discriminación salarial contra la mujer: ¿un problema de segregación ocupacional y sectorial?” Observatorio Laboral: 11–15.Google Scholar
Montenegro, Claudio 2001Wage Distribution in Chile: Does Gender Matter? A Quantile Regression Approach”. Washington, D.C.: World Bank, 35.Google Scholar
Ñopo, Hugo 2006The Gender Wage Gap in Chile 1992–2003 from a Matching Comparisons Perspective”. Interamerican Development Bank No. 2698.CrossRefGoogle Scholar
Oaxaca, R. L. 1973Male-Female Wage Differenctials in Urban Labor Markets”. International Economic Review 14:693709.CrossRefGoogle Scholar
Paredes, Ricardo. 1982Diferencias de ingreso entre hombres y mujeres en el Gran Santiago, 1969 y 1981”. Estudios de Economía 18:99121.Google Scholar
Paredes, Ricardo, y Rivero, Luis 1994Gender Wage Gaps in Chile. A Long Term View: 1958–1990”. Estudios de Economía 21.Google Scholar
Powell, James L. 1983The Asymptotic Normality of Two-Stage Least Absolute Deviations Estimators”. Econometrica 51 (5): 15691575.CrossRefGoogle Scholar