Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T05:15:05.424Z Has data issue: false hasContentIssue false

Interpreting Intrasource Variation in the Composition of Obsidian: The Geoarchaeology of San Martin Jilotepeque, Guatemala

Published online by Cambridge University Press:  20 January 2017

Geoffrey E. Braswell
Affiliation:
Department of Anthropology, State University of New York at Buffalo, Buffalo NY 14261 and Departamento de Arqueología, Universidad del Valle de Guatemala, Apartado Postal 82, Guatemala, Guatemala
Michael D. Glascock
Affiliation:
Research Reactor Center, University of Missouri—Columbia, Columbia, MO 65211

Abstract

Compositional analyses have long been used to assign obsidian artifacts to particular source areas. In most cases, the chemical “fingerprint” of a particular source area has been determined through the assay of only a few geological specimens from one or two outcrops. As a result, the full range of intrasource compositional variation has rarely been noted, and its spatial patterning frequently has not been studied. This report describes the results of geoarchaeological survey at the important Guatemalan source area of San Martín Jilotepeque. Neutron activation analysis demonstrates the presence of seven distinct chemical “fingerprints” corresponding to spatially discrete subsources within the region. Ancient procurement and production are associated with only three of these subsources. Statistical procedures that can be used to assign artifacts to particular quarries or quarry systems are presented. Several minor Guatemalan source areas also are examined, and one (Media Cuesta) also can be characterized as consisting of two distinct subsources.

Los análisis de composición han sido utilizados desde hace mucho tiempo para relacionar los artefactos de obsidiana con yacimientos particulares. En la mayoría de los casos, la huella química de una fuente determinada ha sido establecida por análisis solamente de pocas muestras geológicas de uno o dos afloramientos. Como resultado, el rango completo de variabilidad en la composición dentro de la misma fuente ha sido raramente identificado y los patrones espaciales no han sido estudiados. El presente estudio describe los resultados del reconocimiento geoarqueológico en la importante fuente guatemalteca de San Martín Jilotepeque. El análisis por activación neutrónica demuestra la presencia de siete huellas químicas distintas, las cuales corresponden a yacimientos secundarios separados espacialmente en la región. La obtención y la producción antigua están asociadas con solamente tres de estos yacimientos secundarios. Presentamos los procedimientos estadísticos que pueden usarse para relacionar artefactos a canteras específicas o a sistemas particulares de canteras. Se examinan también algunas fuentes guatemaltecas menores, una de las cuales (Media Cuesta) se caracteriza por contener dos yacimientos secundarios distintos.

Type
Reports
Copyright
Copyright © Society for American Archaeology 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Asaro, F., Salazar, E., Michel, H. V., Burger, R. L., and Stross, F. H. 1994 Ecuadorian Obsidian Sources Used for Artifact Production and Methods for Provenience Assignments. Latin American Antiquity 5:257277.Google Scholar
Bayman, J. M. 1995 Rethinking “Redistribution” in the Archaeological Record: Obsidian Exchange at the Marana Platform Mound. Journal of Anthropological Research 51:3763.CrossRefGoogle Scholar
Bouska, V. 1993 Natural Glasses. Ellis Horwood, New York.Google Scholar
Bowman, H. R., Asaro, F., and Perlman, I. 1973 On the Uniformity of Composition in Obsidians and Evidence for Magmatic Mixing. Journal of Geology 81:312327.Google Scholar
Braswell, G. E. 1996 A Maya Obsidian Source: The Geoarchaeology, Settlement History, and Ancient Economy of San Martín Jilotepeque, Guatemala. Ph.D. dissertation, Department of Anthropology, Tulane University, New Orleans. University Microfilms, Ann Arbor.Google Scholar
Braswell, G. E., and Glascock, M. D. 1992 A New Obsidian Source in the Highlands of Guatemala. Ancient Mesoamerica 3:4749.CrossRefGoogle Scholar
Clark, J. E. 1981 Guatemalan Obsidian Sources and Quarries: Additional Notes. Journal of New World Archaeology 4:115.Google Scholar
Cobean, R. H., Coe, M. D., Perry, E. A. Jr., Turekian, K. K., and Kharkar, D. P. 1971 Obsidian Trade at San Lorenzo Tenochtitlan, Mexico. Science 174:666671.Google Scholar
Ericson, J. E., and Glascock, M. D. 1992 Chemical Characterization of Obsidian Flows and Domes of the Coso Volcanic Field, China Lake, California. Poster presented at the 28th International Symposium on Archaeometry, Los Angeles.Google Scholar
Glascock, M. D. 1994 New World Obsidian: Recent Investigations. In Archaeometry of Pre-Columbian Sites and Artifacts, Proceedings of the 28th International Symposium on Archaeometry, edited by D. A. Scott and P. Myers, pp. 113134. Getty Conservation Institute, Los Angeles.Google Scholar
Glascock, M. D., Braswell, G. E., and Cobean, R. H. 1998 A Systematic Approach to Obsidian Source Characterization. In Archaeological Obsidian Studies: Method and Theory, edited by M. S. Shackley. Plenum Press, New York, pp. 1565.Google Scholar
Glascock, M. D., Elam, J. M., and Cobean, R. H. 1988 Differentiation of Obsidian Sources in Mesoamerica. In Archaeometry ‘88: Proceedings of the 26th International Archaeometry Symposium, edited by R. M. Farquhar, R. G. V. Hancock and L. A. Pavlish, pp. 245251. University of Toronto, Toronto.Google Scholar
Glascock, M. D., Neff, H., Stryker, K. S., and Johnson, T. N. 1994 Sourcing Archaeological Obsidian by an Abbreviated NAA Procedure. Journal of Radio-analytical and Nuclear Chemistry Articles 180(1):2935.Google Scholar
Godfrey-Smith, D. I., Kronfeld, J., Strull, A., and D’Auria, J. M. 1993 Obsidian Provenancing and Magmatic Fractionation in Central Oregon. Geoarchaeology 8:385394.Google Scholar
Graham, C. C, Glascock, M. D., Carni, J. J., Vogt, J. R., and Spalding, T. G. 1982 Determination of Elements in National Bureau of Standards’ Geological Standard Reference Materials by Neutron Activation Analysis. Analytical Chemistry 54:16231627.Google Scholar
Heizer, R. F, Williams, H., and Graham, J. A. 1965 Notes on Mesoamerican Obsidians and Their Significance in Archaeological Studies. Contributions of the University of California Archaeological Research Facility 1:94103.Google Scholar
Hughes, R. E. 1986 Diachronic Variability in Obsidian Procurement Patterns in Northeastern California and Southcentral Oregon. University of California Publications in Anthropology 17. Berkeley.Google Scholar
Hughes, R. E. 1994 Intrasource Chemical Variability of Artefact-Quality Obsidians from the Casa Diablo Area, California. Journal of Archaeological Science 21:263271.Google Scholar
Hughes, R. E., and Smith, R. L. 1993 Archaeology, Geology, and Geochemistry in Obsidian Provenance Studies. In Effects of Scale on Archaeological and Geoscientific Perspectives, edited by J. K. Stein and A. R. Linse, pp. 7991. Geological Society of America Special Paper 283. Boulder.CrossRefGoogle Scholar
Instituto Geográfico Militar de Guatemala 1976 Grenados. Hoja 2060 I, 1:50,000 scale series. Guatemala.Google Scholar
Instituto Geográfico Militar de Guatemala 1978 Joyabaj. Hoja 2060 IV, 1:50,000 scale series. Guatemala.Google Scholar
Instituto Geográfico Militar de Guatemala 1983 San Juan Sacatepéquez. Hoja 2060 II, 1:50,000 scale series. Guatemala.Google Scholar
Instituto Geográfico Militar de Guatemala 1984a Chimaltenango. Hoja 2059 IV, 1:50,000 scale series. Guatemala.Google Scholar
Instituto Geográfico Militar de Guatemala 1984b Tecpán Guatemala. Hoja 2060 III, 1:50,000 scale map series. Guatemala.Google Scholar
Instituto Geográfico Nacional de Guatemala 1977 Chimaltenango. Hoja 2059 IV G, 1:50,000 scale geological series. Guatemala.Google Scholar
Instituto Geográfico Nacional de Guatemala 1981 San Juan Sacatepéquez. Hoja 2060 II G, 1:50,000 scale geological series. Guatemala.Google Scholar
Mahood, G. A. 1980 Geological Evolution of a Pleistocene Rhyolitic Center—Sierra La Primavera, Jalisco, Mexico. Journal of Volcanology and Geothermal Research 8:119230.Google Scholar
Mahood, G. A. 1981 A Summary of the Geology and Petrology of the Sierra La Primavera, Jalisco, Mexico. Journal of Geophysical Research 86(B11): 137152.Google Scholar
Mahood, G. A. 1988 Obsidian Source Heterogeneity and Uniqueness: An Example from Western Mexico. In Obsidian Dates IV, edited by C. W. Meighan and J. L. Scalise, pp. 105112. Monograph 29. Institute of Archaeology, University of California, Los Angeles.Google Scholar
Peterson, J. E., Mitchell, D. R., and Shackley, M. S. 1994 Obsidian from Pueblo Grande, Arizona: Modeling Social and Economic Patterns of Lithic Procurement. In Archaeometry of Pre-Columbian Sites and Artifacts, Proceedings of the 28th International Symposium on Archaeometry, edited by D. A. Scott and P. Myers, pp. 161174. Getty Conservation Institute, Los Angeles.Google Scholar
Shackley, M. S. 1990 Early Hunter-Gatherer Procurement Ranges in the Southwest: Evidence from Obsidian Geochemistry and Lithic Technology. Ph.D. dissertation, Department of Anthropology, Arizona State University. University Microfilms, Ann Arbor.Google Scholar
Shackley, M. S. 1992 The Upper Gila River Gravels as an Archaeological Obsidian Source Region: Implications for Models of Exchange and Interaction. Geoarchaeology 7:315326.CrossRefGoogle Scholar
Sheets, P. D. 1983 Guatemalan Obsidian: A Preliminary Study of Sources and Quirigua Artifacts. In Quirigua Reports,Wol. 2, edited by E. M. Schortman and P. A. Urban, pp. 87101. University Museum, University of Pennsylvania, Philadelphia.Google Scholar
Sidrys, R. V., Andresen, J., and Marcucci, D. 1976 Obsidian Sources in the Maya Area. Journal of New World Archaeology 1:113.Google Scholar
Stross, F. H., Sheets, P. D., Asaro, F., and Michel, H. V. 1983 Precise Characterization of Guatemalan Obsidian Sources, and Source Determination of Artifacts from Quirigua. American Antiquity 48:323346.Google Scholar
Williams, H. 1960 Volcanic History of the Guatemalan Highlands. University of California Publication in Geological Sciences, 38(1):186. University of California Press, Berkeley and Los Angeles.Google Scholar