Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-21T21:49:28.293Z Has data issue: false hasContentIssue false

Geophysical Survey on the Coast of Peru: The Early Prehispanic City of Gallinazo Group in the Viru Valley

Published online by Cambridge University Press:  20 January 2017

Jean-François Millaire
Affiliation:
Department of Anthropology, The University of Western Ontario, London, Ontario, Canada, N6A 5C2, ([email protected])
Edward Eastaugh
Affiliation:
Department of Anthropology, The University of Western Ontario, London, Ontario, Canada, N6A 5C2, ([email protected])

Abstract

Recent geophysical survey at the early urban center of the Gallinazo Group in the Virú Valley highlights the potential for a multifaceted approach to remote sensing on the desert coast of South America and underscores the value of these well-established techniques for the rapid and detailed mapping of complex urban architecture. The Gallinazo Group (100 B.C.-A.D. 700) was an early city home to a population of between 10,000 and 14,400 people living in a network of agglutinated houses, plazas, public buildings, and alleyways. In 2008, detailed analysis of the site was undertaken, integrating traditional excavation techniques, soil coring, magnetometry, and ground-penetrating radar to gain a better understanding of the urban morphology of the site. The results of this fieldwork were extremely successful, with large areas of the urban layout being mapped in great detail. This article presents results from our survey, highlighting the potentials and limitations of each technique.

Resumen

Resumen

Los nuevos estudios geoflsicos en el centro urbano del Grupo Gallinazo en el Valle de Virú resaltan el potencial de un enfoque multifacético en la teledetección en esta costa desértica de Suramérica, además de subrayar el valor de estas ya probadas técnicas para el mapeo rápido y detallado de arquitectura urbana compleja en la región. El Grupo Gallinazo (100 a.C-700 d.C.) consiste en una ciudadantigua con una población de entre l0.000y 14.000 personas viviendo en una redde casas aglutinadas, plazas, edificios públicos y callejones. En 2008 se llevó a cabo un análisis detallado del sitio agregando a las técnicas tradicionales de excavación la extracción de muestras por calicata, la magnetometría y el georadar para mejorar nuestra comprensión de la morfologi'a urbana del sitio. Los resultados fueron un gran éxito, revelando grandes áreas de la trama urbana de la ciudad con gran detalle. Este trabajo presenta los resultados de nuestro relevamiento y destaca el potencial y las limitaciones de cada técnica.

Type
Articles
Copyright
Copyright © Society for American Archaeology 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Aitken, Melvin J. 1961 Physics and Archaeology. Interscience, New York.Google Scholar
Bennett, Wendell C. 1950 The Gallinazo Group, Viru Valley, Peru. Yale University Press, New Haven.Google Scholar
Bouma, Arnold H. 1969 Methods for the Study of Sedimentary Structures. Wiley-Interscience, New York.Google Scholar
Boyer, Peter, Roberts, Neil, and Baird, Douglas 2006 Holocene Environment and Settlement on the Çarsamba Alluvial Fan, South-Central Turkey: Integrating Geoarchaeology and Archaeological Field Survey. Geoarchaeology 2l(7):675698.Google Scholar
Cannon, Aubrey 2000 Settlement and Sea-Levels on the Central Coast of British Columbia: Evidence from Shell Midden Cores. American Antiquity 65(1):6777.Google Scholar
Chapdelaine, Claude 2009 Domestic Life in and around the Urban Sector of the Huacas of Moche Site. In Prehispanic Capitals: A Study of Specialization, Hierarchy, and Ethnicity, edited by Linda Manzanilla and Claude Chapdelaine, pp. 181196. Museum of Anthropology, University of Michigan, Ann Arbor.Google Scholar
Clark, Anthony 1990 Seeing Beneath the Soil: Prospecting Methods in Archaeology. B.T. Batsford Ltd, London.Google Scholar
Clay, R. Berle 2001 Complementary Geophysical Survey Techniques: Why Two Ways Are Always Better Than One. Southeastern Archaeology 20(1):3143.Google Scholar
Contreras, Daniel A. 2010 Huaqueros and Remote Sensing Imagery: Assessing Looting Damage in the Virú Valley, Peru. Antiquity 84:544555.Google Scholar
Conyers, Lawrence B. 2006 Ground Penetrating Radar. In Remote Sensing in Archaeology: An Explicitly North American Perspective, edited by Jay K. Johnson, pp. 131159. University of Alabama Press, Tuscaloosa.Google Scholar
Conyers, Lawrence B. 2010 Ground Penetrating Radar for Anthropological Research. Antiquity 84(323): 175184.Google Scholar
Conyers, Lawrence B. 2013 Ground Penetrating Radar for Archaeology. 3rd ed. Alta Mira Press, Rowman and Littlefiled Publishers Inc, New York.Google Scholar
Conyers, Lawrence B., and Leckebusch, Juerg 2010 Geophysical Archaeology Research Agendas for the Future: Some Ground-Penetrating Radar Examples. Archaeological Prospection 17(2): 117123.Google Scholar
Cowgill, George L. 2004 Origins and Development of Urbanism: Archaeological Perspectives. Annual Review of Anthropology 33(1):525549.Google Scholar
Drahor, Mahmut G. 2006 Integrated Geophysical Studies in the Upper Part of Sardis Archaeological Site, Turkey. Journal of Applied Geophysics 59(3):205223.Google Scholar
Fogel, Heidy P. 1993 Settlements in Time: A Study of Social and Political Development during the Gallinazo Occupation of the North Coast of Peru. Unpublished Ph.D. dissertation, Department of Anthropology, Yale University, New Haven.Google Scholar
Ford, James A. 1949 Cultural Dating of Prehistoric Sites in Virú Valley, Peru. In Surface Survey of the Virú Valley, Peru, edited by James A. Ford and Gordon R. Willey, pp. 2987. Anthropological Papers Vol. 43, Pt. 1. American Museum of Natural History, New York.Google Scholar
Gaffney, Chris F., and Gater, John A. 2003 Revealing the Buried Past: Geophysics for Archaeologists. Tempus, Stroud.Google Scholar
Gaffney, Chris F., Gater, John A., Linford, Paul, Gaffney, Vince L., and White, R. 2000 Large-Scale Systematic Fluxgate Gradiometry at the Roman City of Wroxeter. Archaeological Prospection 7(2):8199.Google Scholar
Johnson, Jay K. 2006 Introduction. In Remote Sensing in Archaeology: An Explicitly North American Perspective, edited by Jay K. Johnson, pp. 116. University of Alabama Press, Tuscaloosa.Google Scholar
Keay, Simon, Millett, Martin, Paroli, Lidia, and Strutt, Kristian D. 2005 Portus: An Archaeological Survey of the Port of Imperial Rome (Archaeological Monographs of the British School at Rome 15). British School at Rome, London.Google Scholar
Keay, Simon, Millett, Martin, and Strutt, Kristian D. 2006 An Archaeological Survey of Capena (La Civitucola, Provincia di Roma). Papers of the British School at Rome 74:73118.Google Scholar
Keay, Simon, Earl, Graeme, Hay, Sophie, Kay, Stephen, Ogden, Jessica, and Strutt, Kristian D. 2009 The Role of Integrated Geophysical Survey Methods in the Assessment of Archaeological Landscapes: The Case Study of Portus. Archaeological Prospection 16(3):154166.Google Scholar
Kvamme, Kenneth L. 2003 Geophysical Surveys as Landscape Archaeology. American Antiquity 68(3):43557.Google Scholar
Kvamme, Kenneth L. 2006 Magnetometry: Nature’s Gift to Archaeology. In Remote Sensing in Archaeology: An Explicitly North American Perspective, edited by Jay K. Johnson, pp. 205233. University of Alabama Press, Tuscaloosa.Google Scholar
Kvamme, Kenneth L., Johnson, Jay K., and Haley, Bryan S. 2006 multiple Methods Surveys: Case Studies. In Remote Sensing in Archaeology: An Explicitly North American Perspective, edited by Jay K. Johnson, pp. 251267. University of Alabama Press, Tuscaloosa.Google Scholar
Lasaponara, Rosa, Masinib, Nicola, Rizzoa, Enzo, and Oreficic, Giuseppe 2011 New Discoveries in the Piramide Naranjada in Cahuachi (Peru) Using Satellite, Ground Probing Radar and Magnetic Investigations. Journal of Archaeological Science 38(9):20312039.Google Scholar
Leckebusch, Jürg 2003 Ground-Penetrating Radar: A Modern Three-Dimensional Prospection Method. Archaeological Prospection 10(4):213240.Google Scholar
Marcus, Joyce, and Flannery, Kent V. 1996 Zapotec Civilization: How Urban Society Evolved in Mexico’s Oaxaca Valley. Thames and Hudson, New York.Google Scholar
Martindale, Andrew, Lethama, Bryn, McLarenb, Duncan, Archerc, David, Burchelld, Meghan, and Schönee, Bernd R. 2009 Mapping of Subsurface Shell Midden Components through Percussion Coring: Examples from the Dundas Islands. Journal of Archaeological Science 36(7):15651575.Google Scholar
Masur, Lindi Jaclyn 2012 Peanuts and Prestige on the Peruvian North Coast: The Archaeology of Peanuts at Huaca Gallinazo (V-59) and Huaca Santa Clara (V-67). Unpublished Master’s thesis, Department of Anthropology, University of British Columbia, Vancouver.Google Scholar
Millaire, Jean-François 2002 Moche Burial Patterns: An Investigation into Pre-hispanic Social Structure. Archaeopress, Oxford.Google Scholar
Millaire, Jean-François 2010a Moche Political Expansionism as Viewed from Virú: Recent Archaeological Work in the Close Periphery of a Hegemonic City-State System. In New Perspectives on Moche Political Organization, edited by Jeffrey Quilter and Luis Jaime Castillo, pp. 223251. Dumbarton Oaks Research Library and Collection, Washington, D.C.Google Scholar
Millaire, Jean-François 2010b Primary State Formation in the Virú Valley, North Coast of Peru. Proceedings of the National Academy of Sciences 107(14):61866191.Google Scholar
Millaire, Jean-François, and Eastaugh, Edward 2011 Ancient Urban Morphology in the Virú Valley, Peru: Remote Sensing Work at the Gallinazo Group (100 B.C.–A.D. 700). Journal of Field Archaeology 36(4):289297.Google Scholar
Millaire, Jean-François, and Morlion, Magali 2009 Gallinazo: An Early Cultural Tradition on the Peruvian North Coast. Cotsen Institute of Archaeology Press, Los Angeles.Google Scholar
Moseley, Michael E., and Mackey, Carol J. 1974 Twenty-Four Architectural Plans of Chan Chan, Peru: Structure and Form at the Capital of Chimor. Peabody Museum Press, Cambridge, Massachusetts.Google Scholar
Piro, Salvatore, Mauriello, Paolo, and Fabio Cammarano 2000 Quantitive Integration of Geophysical Methods for Archaeological Prospection. Archaeological Prospection 7(4):203213.Google Scholar
Piro, Salvatore, Goodman, Dean, and Nishimura, Yasushi 2003 The Study and Characterisation of Emperor Traiano’s Villa (Altopiani di Arcinazzo, Roma) Using High Resolution Integrated Geopysical Surveys. Archaeological Prospection 10(1): 125.Google Scholar
Rowe, John H. 1963 Urban Settlements in Ancient Peru. Ñawpa Pacha 1(1):127.Google Scholar
Scollar, Irwin, Tabbagh, Alain, Hesse, Albert, and Herzog, Irmela 1990 Archaeological Prospecting and Remote Sensing. Cambridge University Press, Cambridge.Google Scholar
Smith, Michael E. 2007 Form and Meaning in the Earliest Cities: A New Approach to Ancient Urban Planning. Journal of Planning History 6(1):347.Google Scholar
Smith, Michael E. 2010a The Archaeological Study of Neighborhoods and Districts in Ancient Cities. Journal of Anthropological Archaeology 29(2): 137154.Google Scholar
Smith, Michael E. 2010b Sprawl, Squatters, and Sustainable Cities: Can Archaeological Data Shed Light on Modern Urban Issues? Cambridge Archaeological Journal 20(2):229253.Google Scholar
Stein, Julie K. 1986 Coring Archaeological Sites. American Antiquity 51(3):505527.Google Scholar
Summers, Geoffrey D., Françoise Summers, M. E., Baturayoglu, Nilüfer, Harmansah, Ömür, and McIntosh, Elspeth R. 1996 The Kerkenes Dag Survey: An Interim Report. Anatolian Studies 46:201234.Google Scholar
Szpak, Paul, Longstaffe, Fred J., Millaire, Jean-François, and White, Christine D. 2012 Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea mays). PLoS ONE 7(3):e33741.Google Scholar
Szpak, Paul, Millaire, Jean-François, White, Christine D., and Longstaffe, Fred J. 2012 Influence of Seabird Guano and Camelid Dung Fertilization on the Nitrogen Isotopic Composition of Field-Grown Maize (Zea mays). Journal of Archaeological Science 39(12)37213740.Google Scholar
Szpak, Paul, White, Christine D., Longstaffe, Fred J., Millaire, Jean-François, and Vásquez Sánchez, Víctor F. 2013 Carbon and Nitrogen Isotopic Survey of Northern Peruvian Plants: Baselines for Paleodietary and Paleoecological Studies. PLoS ONE 8(1):e53763.Google Scholar
Szpak, Paul, Longstaffe, Fred J., Millaire, Jean-François, and White, Christine D. 2014 Large Variation in Nitrogen Isotopic Composition of a Fertilized Legume. Journal of Archaeological Science 45:7279.Google Scholar
Szpak, Paul, Millaire, Jean-François, White, Christine D., and Longstaffe, Fred J. 2014 Human-Camelid Interactions in the Virú Valley (North Coast of Peru): Insight from Stable Isotope Analysis. Journal of Anthropological Archaeology, in press.Google Scholar
Thompson, Victor D., Arnold, Philip J. III, Pluckhahn, Thomas J., and Vanderwarker, Amber M. 2011 Situating Remote Sensing in Anthropological Archaeology. Archaeological Prospection 18(3):195213.Google Scholar
Tsokas, Grigoris N., Giannopoulos, Antonis, Tsourlos, Panagiotis, Vargemeziz, George, Tealby, J. M., Sarris, Apostolos, Papazachos, Con-stantinos B., and Sauopoulou, T. 1994 A Large Scale Geophysical Survey in the Archaeological Site of Europos (Northern Greece). Journal of Applied Geophysics 32(1):8598.Google Scholar
Venet-Rogers, Claire 2013 A Faunal Analysis of Consumption at the Gallinazo Group Site, on the Peruvian North Coast. Unpublished Master’s thesis, Department of Anthropology, University of Western Ontario, London, Ontario.Google Scholar
Willey, Gordon R. 1953 Prehistoric Settlement Patterns in the Virú Valley, Peru. United States Government Printing Office, Washington, D.C.Google Scholar
Williams, Patrick Ryan, Couture, Nicole, and Blom, Deborah 2007 Urban Structure at Tiwanaku: Geophysical Investigations in the Andean Altiplano. In Remote Sensing in Archaeology, edited by James Wiseman and Farouk ElBaz, pp. 423141. Springer, New York.Google Scholar