Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T19:48:54.288Z Has data issue: false hasContentIssue false

X-ray emission of Xe30+ ion beam impacting on Au target

Published online by Cambridge University Press:  02 June 2011

Xiaoan Zhang
Affiliation:
Institute of Modern Physics, Chinese Academy of Science, Lanzhou, China Ion beam & Optical Physical joint Laboratory of Xianyang Normal University and Institute of Modern Physics, Chinese Academy of Sciences, Xianyang, China
Yongtao Zhao*
Affiliation:
Institute of Modern Physics, Chinese Academy of Science, Lanzhou, China Ion beam & Optical Physical joint Laboratory of Xianyang Normal University and Institute of Modern Physics, Chinese Academy of Sciences, Xianyang, China
Dieter H.H. Hoffmann
Affiliation:
Ion beam & Optical Physical joint Laboratory of Xianyang Normal University and Institute of Modern Physics, Chinese Academy of Sciences, Xianyang, China Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
Zhihu Yang
Affiliation:
Institute of Modern Physics, Chinese Academy of Science, Lanzhou, China
Ximeng Chen
Affiliation:
School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
Zhongfeng Xu
Affiliation:
Department of Applied Physics, Xi'an Jiaotong University, Xi'an, China
Fuli Li
Affiliation:
Department of Applied Physics, Xi'an Jiaotong University, Xi'an, China
Guoqing Xiao
Affiliation:
Institute of Modern Physics, Chinese Academy of Science, Lanzhou, China
*
Address correspondence and reprint requests to: Yongtao Zhao, Institute of Modern Physics, Chinese Academy of Science, Lanzhou, China. E-mail: [email protected]

Abstract

X-ray emission from Xe30+ ions at 350–600 keV impacting on an Au target was investigated at the Heavy Ion Research Facility at Lanzhou. Characteristic X-rays of Xe ions at energy of about 1.65 keV were observed. This X-ray emission is induced by the decay of very high Rydberg states of Xe ions. It was also found that the yield of such characteristic X-rays is decreasing with increasing the projectile kinetic energy. Simultaneously, the yield of the characteristic Au X-rays from the M shell increases also. These phenomena are qualitatively analyzed with the classical Coulomb over the Barrier Mode (COBM) for highly charged ions interacting with solid state surfaces.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adonin, A., Turtikov, V., Ulrich, A., Jacoby, J., Hoffmann, D.H.H. & Wieser, J. (2009). Intense heavy ion beams as a pumping source for short wavelength lasers. Laser Part. Beams 27, 379391.CrossRefGoogle Scholar
Bock, R.M., Hoffmann, D.H.H., Hofmann, I. & Logan, G. (2005). Inertial Confinement Fusion: Heavy Ions, Landolt–Börnstein, New Series: Energy Technologies, Subvolume B: Nuclear Energy, Springer-Verlag, Heidelberg. p. 529.Google Scholar
Burgdorfer, J., Lerner, P. & Meyer, F.W. (1991). Above-surface neutralization of highly charged ions: The classical over-the-barrier model. Phys. Rev. A 44, 56745685.CrossRefGoogle ScholarPubMed
Golubev, A., Turtikov, V., Fertman, A., Roudskoy, I., Sharkov, B., Geissel, M., Neuner, U., Roth, M., Tauschwitz, A., Wahl, H., Hoffmann, D.H.H., Funk, U., Suss, W. & Jacoby, J. (2001). Experimental investigation of the effective charge state of ions in beam-plasma interaction. Nucl. Instr. & Meth. Phys. Res. Sec. A 464, 247252.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Korostiy, S., Ni, P., Pikuz, S.A., Rosmej, O., Roth, M., Tahir, N.A., Udrea, S., Varentsov, D., Weyrich, K., Sharkov, B.Y. & Maron, Y. (2007). Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt. Nucl. Instr. & Meth. Phys. Res. Sec. A 577, 813.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Logan, G., Bieniosek, F., Celata, C., Henestroza, E., Kwan, J., Lee, E.P., Leitner, M., Prost, L., Roy, P., Seidl, P.A., Eylon, S., Vay, J.L., Waldron, W., Yu, S., Barnard, J., Callahan, D., Cohen, R., Friedman, A., Grote, D., Covo, M.K., Meier, W.R., Molvik, A., Lund, S., Davidson, R., Efthimion, P., Gilson, E., Grisham, L., Kaganovich, I., Qin, H., Startsev, E., Rose, D., Welch, D., Olson, C., Kishek, R., O'Shea, P. & Haber, I. (2005). Overview of US heavy-ion fusion progress and plans. Nucl. Instr. & Meth. Phys. Res. Sec. A 544, 18.CrossRefGoogle Scholar
Pikuz, S.A., Chefonov, O.V., Gasilov, S.V., Komarov, P.S., Ovchinnikov, A.V., Skobelev, I.Y., Ashitkov, S.Y., Agranat, M.V., Zigler, A. & Faenov, A.Y. (2010). Micro-radiography with laser plasma X-ray source operating in air atmosphere. Laser Part. Beams 28, 393397.CrossRefGoogle Scholar
Piriz, A., Cela, J., Serena Moreno, M., Tahir, N. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275282.CrossRefGoogle Scholar
Renk, T.J., Mann, G.A. & Torres, G.A. (2008). Performance of a pulsed ion beam with a renewable cryogenically cooled ion source. Laser Part. Beams 26, 545554.CrossRefGoogle Scholar
Rosmej, O.N., Blazevic, A., Korostiy, S., Bock, R., Hoffmann, D.H.H., Pikuz, S.A., Efremov, V.P., Fortov, V.E., Fertman, A., Mutin, T., Pikuz, T.A. & Faenov, A.Y. (2005). Charge state and stopping dynamics of fast heavy ions in dense matter. Phys. Rev. A 72, 52901.CrossRefGoogle Scholar
Rosmej, O.N., Pikuz, S.A., Korostiy, S., Blazevic, A., Brambrink, E., Fertman, A., Mutin, T., Efremov, V.P., Pikuz, T.A., Faenov, A.Y., Loboda, P., Golubev, A.A. & Hoffmann, D.H.H. (2005). Radiation dynamics of fast heavy ions interacting with matter. Laser Part. Beams 23, 7985.CrossRefGoogle Scholar
Rzadkiewicz, J., Gojska, A., Rosmej, O., Polasik, M. & Slabkowska, K. (2010). Interpretation of the Si K alpha X-ray spectra accompanying the stopping of swift Ca ions in low-density SiO2 aerogel. Phys. Rev. A 82, 012703.CrossRefGoogle Scholar
Schenkel, T., Hamza, A.V., Barnes, A.V., Schneider, D.H., Banks, J.C. & Doyle, B.L. (1998). Ablation of GaAs by intense, ultrafast electronic excitation from highly charged ions. Phys. Rev. Lett. 81, 25902593.CrossRefGoogle Scholar
Sharkov, B. (2001). Status of heavy ion fusion. Plasma Phys. Contr. Fusion 43, A229A235.CrossRefGoogle Scholar
Sun, L.T., Zhao, H.W., Lu, W., Zhang, X.Z., Feng, Y.C., Li, J.Y., Cao, Y., Guo, X.H., Ma, H.Y., Zhao, H.Y., Shang, Y., Ma, B.H., Wang, H., Li, X.X., Jin, T. & Xie, D.Z. (2010). Production of highly charged ion beams with SECRAL. Rev. Sci. Instr. 81, 02A318.CrossRefGoogle ScholarPubMed
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnurer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.CrossRefGoogle Scholar
Winter, H.P., Eder, H. & Aumayr, F. (1999). Kinetic electron emission in the near-threshold region studied for different projectile charges. Internat. J. Mass Spectr. 192, 407413.CrossRefGoogle Scholar
Xin, J.P., Zhu, X.P. & Lei, M.K. (2010). Significance of time-of-flight ion energy spectrum on energy deposition into matter by high-intensity pulsed ion beam. Laser Part. Beams 28, 429436.CrossRefGoogle Scholar
Xu, H. (2009). Status and prospects of HIRFL experiments. Nucl. Phys. Rev. 26, 7.Google Scholar
Xu, H.S., Zheng, C., Xiao, G.Q., Zhan, W.L., Zhou, X.H., Zhang, Y.H., Sun, Z.Y., Wang, J.S., Gan, Z.G., Huang, W.X. & Ma, X.W. (2010). Status and prospects of HIRFL experiments on nuclear physics. Internat. J. Mod. Phys. E 19, 18021814.CrossRefGoogle Scholar
Zavestovskaya, I.N. (2010). Laser-assisted metal surface micro- and nanostructurization. Laser Part. Beams 28, 437442.CrossRefGoogle Scholar
Zhao, H.W., Zhang, Z.M., He, W., Zhang, X.Z., Guo, X.H., Cao, Y., Yuan, P., Sun, L.T., Ma, L., Song, M.T., Zhan, W.L., Wei, B.W. & Xie, D.Z. (2004). Intense heavy ion beam production from IMP LECR3 and construction progress of a superconducting ECR ion source SECRAL. Rev. Sci. Instr. 75, 14101413.CrossRefGoogle Scholar
Zhao, Y., Xiao, G.Q., Xu, H.S., Zhao, H.W., Xia, J.W., Jin, G.M., Ma, X.W., Liu, Y., Yang, Z.H., Zhang, P.M., Wang, Y.Y., Li, D.H., Zhao, H.Y., Zhan, W.L., Xu, Z.F., Zhao, D., Li, F.L. & Chen, X.M. (2009). An outlook of heavy ion driven plasma research at IMP-Lanzhou. Nucl. Instr. & Meth. Phys. Res. Sec. B 267, 163166.CrossRefGoogle Scholar