Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T07:21:56.717Z Has data issue: false hasContentIssue false

X-ray coherent mirage: Generation of phase – matched coherent point source in plasma media by propagated X-ray laser seeded beam

Published online by Cambridge University Press:  30 May 2016

A.Ya. Faenov*
Affiliation:
Institute for Academic Initiatives, Osaka University, Suita 565-0871, Japan Joint Institute for High Temperatures, Russian Academy of Science, Moscow 125412, Russia
T.A. Pikuz
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Science, Moscow 125412, Russia Graduate School of Engineering and Photon Pioneers center, Osaka University, Suita, Osaka 565-087Japan
S.A. Magnitskiy
Affiliation:
Physical Department, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
N. Nagorskiy
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Science, Moscow 125412, Russia
M. Tanaka
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
M. Ishino
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
M. Nishikino
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
M. Kando
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
R. Kodama
Affiliation:
Institute for Academic Initiatives, Osaka University, Suita 565-0871, Japan Graduate School of Engineering and Photon Pioneers center, Osaka University, Suita, Osaka 565-087Japan
Y. Kato
Affiliation:
The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202, Japan
T. Kawachi
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
*
Address correspondence and reprint requests to: A.Ya. Faenov, Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan. E-mail: [email protected]

Abstract

The overview of the recent results for discovery and investigations of a very exotic phenomenon – optical mirage in the X-ray spectral range – is presented. It was found that the mirage could be created in the form of coherent virtual point source, emerging in the vicinity of the second plasma in two-stage oscillator-amplifier X-ray laser. The X-ray source-mirage, rigidly phased with the initial radiation of generator, occurs only when amplification takes place in the amplifier plasma and leads to the appearance of the interference pattern in the form of concentric rings in the spatial profile of the output X-ray laser beam. The equation describing the emergence of X-ray mirage was found, numerical solution of which shows that its formation is similar to that of the optical mirages observed at propagation of light rays through an inhomogeneously heated air. Obtained results have already demonstrated novel comprehension into the physical nature of amplification of X-ray radiation, opening additional opportunities for X-ray interferometry, holography, and other applications, which require multiple rigidly phased sources of coherent radiation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avrorin, E.N., Lykov, V.A., Loboda, P.A. & Politov, V.YU. (1997). Review of theoretical works on X-ray laser research performed at RFNC – VNIITF. Laser Part. Beams 15, 315.Google Scholar
Baer, A., Schwob, J.L., Eliezer, S., Henis, Z. & Eliezer, S. (1996). X-ray laser scheme driven by two laser pulses. Laser Part. Beams 14, 625630.CrossRefGoogle Scholar
Berrill, M., Alessi, D., Wang, Y., Domingue, S.R., Martz, D.H., Luther, B.M., Liu, Y. & Rocca, J.J. (2010). Improved beam characteristics of solid-target soft x-ray laser amplifiers by injection seeding with high harmonic pulses. Opt. Lett. 35, 23172319.Google Scholar
Born, M. & Wolf, E. (1980). Principles of Optics. Oxford, New York: Pergamon Press.Google Scholar
Ceglio, N.M. (1991). X-ray optics for X-ray laser research applications. Laser Part. Beams 9, 7190.Google Scholar
Daido, H. (2002). Review of soft X-ray laser researches and developments. Rep. Prog. Phys. 65, 15131576.Google Scholar
Depresseux, A., Oliva, E., Gautier, J., Tissandier, F., Nejdl, J., Kozlova, M., Maynard, G., Goddet, J. P., Tafzi, A., Lifschitz, A., Kim, H. T., Jacquemot, S., Malka, V., Ta Phuoc, K., Thaury, C., Rousseau, P., Iaquaniello, G., Lefrou, T., Flacco, A., Vodungbo, B., Lambert, G., Rousse, A., Zeitoun, P. & Sebban, S. (2015). Table-top femtosecond soft X-ray laser by collisional ionization gating. Nat. Photon. 9, 817822.Google Scholar
Ecker, B., Oliva, E., Aurand, B., Hochhaus, D. C., Neumayer, P., Zhao, H., Zielbauer, B., Cassou, K., Daboussi, S., Guilbaud, O., Kazamias, S., Le, T.T.T., Ros, D., Zeitoun, P. & Kühl, T. (2012). Gain lifetime measurement of a Ni-like Ag soft X-ray laser. Opt. Express 20, 25391.Google Scholar
Elton, R.C. (1990). X-ray Lasers. London, UK: Academic Press Limited.Google Scholar
Jaegle, P. (2006). Coherent Sources of XUV Radiation. Springer.Google Scholar
Kim, C.M., Jamulewicz, K.A. & Lee, J. (2011). Pulse buildup from noise and intrinsic polarization of plasma-based X-ray lasers. Phys. Rev. A 84, 013834.Google Scholar
Knowlton, A.A. (1919). An unusual mirage. Science 50, 328.Google Scholar
Larroche, O., Ros, D., Klisnick, A., Sureau, A., Moller, C. & Guennou, H. (2000). Maxwell-Bloch modeling of X-ray-laser-signal buildup in single- and double-pass configurations. Phys. Rev. A 62, 043815.Google Scholar
Le Pape, S. & Zeitoun, P.H. (2001). Modeling of the double pass X-ray laser: Effects on its focalization. Laser Part. Beams 19, 137139.Google Scholar
Magnitskiy, S.A., Nagorskiy, N.M., Faenov, A., Pikuz, T., Tanaka, M., Ishino, M., Nishikino, M., Fukuda, Y., Kando, M., Kawachi, T. & Kato, Y. (2013). Observation and theory of X-ray mirages. Nat. Commun. 4, 1936.Google Scholar
Nishikino, M., Hasegawa, N., Kawachi, T., Yamatani, H., Sukegawa, K. & Nagashima, K. (2008). Characterization of a high- brilliance soft X-ray laser at 13.9 nm by use of an oscillator amplifier configuration. App. Opt. 47, 11291134.Google Scholar
Nishikino, M., Ochi, Y., Hasegawa, N., Kawach, I.T., Yamatani, H., Ohba, T., Kaihori, T. & Nagashima, K. (2009). Demonstration of a highly coherent 13.9 nm X-ray laser from a silver tape target. Rev. Sci. Instrum. 80, 116102.Google Scholar
Ohnishi, N., Nishikino, M. & Sasaki, A. (2006). Numerical analysis of plasma medium of transient collisional excited X-ray laser. J. Phys. IV France 113, 11931195.Google Scholar
Oliva, E., Fajardo, M., Li, L., Pittman, M., Le, T.T.T., Gautier, J., Lambert, G., Velarde, P., Ros, D., Sebban, S. & Zeitoun, P.H. (2012). A proposal for multi-tens of GW fully coherent femtosecond soft X-ray lasers. Nat. Photon. 6, 764767.Google Scholar
Pert, G.J. (1994). Computational modelling for X-ray lasers. Laser Part. Beams 12, 209222.Google Scholar
Pikuz, T., Faenov, A., Magnitskiy, S., Nagorskiy, N., Tanaka, M., Ishino, M., Nishikino, M., Fukuda, Y., Kando, M., Kato, Y. & Kawachi, T. (2014). Coherent X-ray mirage: Discovery and possible applications. High Power Laser Sci. Eng. 2, e12.Google Scholar
Raman, C.V. & Pancharatnam, S. (1959). The optics of mirages. Proc. Ind. Acad. Sci. A 49, 251261.Google Scholar
Suckewer, S. & Jaegle, P. (2009). X-ray laser: Past, present, and future. Laser Phys. Lett. 6, 411436.Google Scholar
Tallents, G.J., Abou-Ali, Y., Edwards, M., King, R., Pert, G.J., Pestehe, S.J., Strati, F., Lewis, C.L.S., Keenan, R., Topping, S., Klisnick, A., Guilbaud, O., Ros, D., Clarke, R., Notley, M. & Neely, D. (2002). A review of X-ray laser development at Rutherford Appleton Laboratory. Laser Part. Beams 20, 201209.CrossRefGoogle Scholar
Volllmer, M. (2009). Mirrors in the air: Mirages in nature and in the laboratory. Phys. Educ. 44, 165174.Google Scholar
Wang, Y., Granados, E., Pedaci, F., Alessi, D., Luther, B., Berrill, M. & Rocca, J. J. (2008). Phase-coherent, injection-seeded, table-top soft-X-ray lasers at 18.9 nm and 13.9 nm. Nat. Photon. 2, 9498.Google Scholar
Wang, Y., Wang, S., Oliva, E., Li, L., Berrill, M., Yin, L., Nejdl, J., Luther, B.M., Proux, C., Le, T.T.T., Dunn, J., Ros, D., Zeitoun, P.H. & Rocca, J.J. (2014). Gain dynamics in a soft-X-ray laser amplifier perturbed by a strong injected X-ray field. Nat. Photon. 8, 381384.CrossRefGoogle Scholar
Zeitoun, P., Faivre, G, Sebban, S., Mocek, T., Hallou, A., Fajardo, M., Aubert, D., Balcou, P.H., Burgy, F., Douillet, D., Kazamias, S., De Lachèze-Murel, G., Lefrou, T., Le Pape, S., Mercère, P., Merdji, H., Morlens, A.S., Rousseau, J. P. & Valentin, C. (2004). A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam. Nature 431, 426.Google Scholar
Zimmer, D., Zielbauer, B., Pittman, M., Guilbaud, O., Habib, J., Kazamias, S., Ros, D., Bagnoud, V. & Kühl, T. (2010). Optimization of a tabletop high-repetition-rate soft x-ray laser pumped in double-pulse single-beam grazing incidence. Opt. Lett. 35, 450.Google Scholar