Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T23:33:07.443Z Has data issue: false hasContentIssue false

Weibel instability analysis in laser-produced plasmas

Published online by Cambridge University Press:  09 March 2009

K. Bendib
Affiliation:
Laboratoire Interaction Laser-Matière, I.R.S.A.M.C., U.P.S., 118 route de Narbonne, 31062 Toulouse Cedex, France
A. Bendib
Affiliation:
Laboratoire Interaction Laser-Matière, I.R.S.A.M.C., U.P.S., 118 route de Narbonne, 31062 Toulouse Cedex, France
K. Bendib
Affiliation:
Laboratoire de Physique des Milieux Ionisés, Institut de Physique, U.S.T.H.B., BP 32 El Alia, Algiers, Algeria
A. Bendib
Affiliation:
Laboratoire de Physique des Milieux Ionisés, Institut de Physique, U.S.T.H.B., BP 32 El Alia, Algiers, Algeria
A. Sid
Affiliation:
Laboratoire de Physique des Milieux Ionisés, Institut de Physique, U.S.T.H.B., BP 32 El Alia, Algiers, Algeria
K. Bendib
Affiliation:
Département des Sciences Fondamentales, E.N.P., BP 182, Algiers, Algeria

Abstract

Analytic analysis of collisionless Weibel modes in laser-created plasmas is presented. The heat flux (HF), the plasma expansion (PE), and the inverse bremsstrahlung absorption (IBA) sources have been investigated. It has been shown that for short laser wavelengths (λL < 1 µm) and high laser fluxes (I > 1014 W/cm2), the inverse bremsstrahlung absorption is the most efficient Weibel mechanism for producing strong magnetic fields in the vicinity of the critical layer. For large laser wavelengths (λL < 10 µm), the production of the magnetic fields in the vicinity of the critical layer, due to the plasma expansion mechanism, is as important as the ones due to the thermal transport and the inverse bremsstrahlung absorption mechanisms. Useful scaling laws of convective e-foldings, with respect to the laser and the plasma parameters, are also derived.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. 1970 Handbook of Mathematical Functions, Abramowitz, M. and Stegun, I., eds. (Dover, New York).Google Scholar
Albriton, J.R. et al. 1986 Phys. Rev. Lett. 57, 1887.CrossRefGoogle Scholar
Allen, J.E. & Andrews, G.J. 1970 J. Plasma Phys. 4, 187.CrossRefGoogle Scholar
Bendib, A. & Luciani, J.F. 1987 Phys. Fluids 30, 1353.CrossRefGoogle Scholar
Bendib, A. et al. 1988 Phys. Fluids 31, 711.CrossRefGoogle Scholar
Braginskii, S.I. 1965 Review of Plasma Physics, Vol. 1, Leontovich, M.A., ed. (Consultants Bureau, New York).Google Scholar
Epperlein, E.M. 1985 Plasma Phys. Controlled Fusion 27, 1027.CrossRefGoogle Scholar
Fabbro, R. et al. 1985 Phys. Fluids 28, 1463.CrossRefGoogle Scholar
Felber, F.S. & Decoste, R. 1978 Phys. Fluids 21, 520.CrossRefGoogle Scholar
Ginsburg, V.L. 1960 Propagation of Electromagnetic Waves in Plasmas (Gordon and Breach, New York).Google Scholar
Gray, R. & Kilkenny, D.J. 1980 Plasma Phys. 22, 81.CrossRefGoogle Scholar
Gurevich, V.A. et al. 1966 Sov. Phys. JETP 22, 449.Google Scholar
Langdon, A.B. 1980 Phys. Rev. Lett. 44, 575.CrossRefGoogle Scholar
Luciani, J.F. et al. 1983 Phys. Rev. Lett. 51, 1664.CrossRefGoogle Scholar
Luciani, J.F. & Mora, P. 1986 J. Stat. Phys. 43, 281.CrossRefGoogle Scholar
Matte, J.P. & Virmont, J. 1982 Phys. Rev. Lett. 49, 1936.CrossRefGoogle Scholar
Matte, J.P. et al. 1987 Phys. Rev. Lett. 58, 2067.CrossRefGoogle Scholar
Mora, P. & Pellat, R. 1979a Phys. Fluids 22, 2408.CrossRefGoogle Scholar
Mora, P. & Pellat, R. 1979b Phys. Fluids 22, 2300.CrossRefGoogle Scholar
Ramani, A. & Laval, G. 1978 Phys. Fluids 21, 980.CrossRefGoogle Scholar
Spitzer, L. & HÄrm, R. 1953 Phys. Rev. 89, 977.CrossRefGoogle Scholar
Tidman, D. & Shanny, R.A. 1974 Phys. Fluids 17, 1207.CrossRefGoogle Scholar
True, M.A. 1985 Phys. Fluids 28, 2597.CrossRefGoogle Scholar
Weibel, E.S. 1959 Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
Wickens, L.M. 1978 Phys. Rev. Lett. 41, 243.CrossRefGoogle Scholar
Yabe, T. & Niu, K. 1976 J. Phys. Soc. Jpn. 40, 1221.CrossRefGoogle Scholar