Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T04:58:57.624Z Has data issue: false hasContentIssue false

Wakefield generation and electron acceleration by intense super-Gaussian laser pulses propagating in plasma

Published online by Cambridge University Press:  21 August 2013

Pallavi Jha*
Affiliation:
Department of Physics, University of Lucknow, Lucknow, India
Akanksha Saroch
Affiliation:
Department of Physics, University of Lucknow, Lucknow, India
Rohit Kumar Mishra
Affiliation:
Department of Physics, University of Lucknow, Lucknow, India
*
Address correspondence and reprint requests to: Palavi Jha, Department of Physics, University of Lucknow, Lucknow-226007, India. E-mail: [email protected]

Abstract

Evolution of longitudinal electrostatic wakefields, due to the propagation of a linearly polarized super-Gaussian laser pulse through homogeneous plasma has been presented via two-dimensional particle-in-cell simulations. The wakes generated are compared with those generated by a Gaussian laser pulse in the relativistic regime. Further, one-dimensional numerical model has been used to validate the generated wakefields via simulation studies. Separatrix curves are plotted to study the trapping and energy gain of an externally injected test electron, due to the generated electrostatic wakefields. An enhancement in the peak energy of an externally injected electron accelerated by wakes generated by super-Gaussian pulse as compared to Gaussian pulse case has been observed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdelli, S., Khalfaoui, A., Kerdja, T. & Ghobrini, D. (1992). Laser-plasma interaction properties through second harmonic generation. Laser Part. Beams 10, 629637.CrossRefGoogle Scholar
Agrawal, G.P. & Potasek, M.J. (1986). Effect of frequency chirping on the performance of optical communication systems. Opt. Lett. 11, 318320.CrossRefGoogle ScholarPubMed
Balakin, A.A., Litvak, A.G., Mironov, V.A. & Skobelev, S.A. (2012). Self-compression of relativistically strong femtosecond laser pulses during the excitation of a plasma wake wave. Europhys. Lett. 100, 34002/1–5.CrossRefGoogle Scholar
Berezhiani, V.I. & Murusidze, I.G. (1992). Interaction of highly relativistic short laser pulses with plasmas and nonlinear wake-field generation. Phys. Scripta 45, 8790.CrossRefGoogle Scholar
Berezhiani, V.I., Garuchava, D.P., Mikeladze, S.V., Sigua, K.I., Tsintsadze, N.L., Mahajan, S.M., Kishimoto, Y. & Nishikawa, K. (2005). Fluid-Maxwell simulation of laser pulse dynamics in overdense plasma. Phys. Plasmas 12, 062308/1–14.CrossRefGoogle Scholar
Chen, P., Dawson, M.J., Huff, R. & Katlouseas, T. (1985). Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693696.CrossRefGoogle ScholarPubMed
Deutsch, C., Furukaw, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of fast ignitor concept. Phys. Rev. Lett. 77, 2883–2486.CrossRefGoogle ScholarPubMed
Dyson, A. & Dangor, A.E. (1991). Laser beat wave acceleration of particles. Laser Part. Beams 9, 619631.CrossRefGoogle Scholar
Esarey, E. & Pilloff, M. (1995). Trapping and acceleration in nonlinear plasma waves. Phys. Plasmas 2, 14321436.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quant. Elect. 33, 18791914.CrossRefGoogle Scholar
Esirkepov, T., Bulanov, S.V., Yamagiwa, M. & Tajima, T. (2006). Electron, positron, and photon wakefield acceleration: trapping, wake overtaking, and ponderomotive acceleration. Phys. Rev. Lett. 96, 014803014806.CrossRefGoogle ScholarPubMed
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. & Malka, V. (2006). Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737739.CrossRefGoogle ScholarPubMed
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 23, 441451.CrossRefGoogle Scholar
Jha, P., Mishra, R.K., Raj, G. & Upadhyay, A.K. (2004). Second harmonic generation in laser-magnetized plasma interaction. Phys. Plasmas 14, 053107/1–4.Google Scholar
Jha, P., Saroch, A., Mishra, R.K. & Upadhyay, A.K. (2012). Laser wakefield acceleration in magnetized plasma. Phys. Rev. ST-A&B 15, 081301/1–6.Google Scholar
Leemans, W.P., Catravas, P., Esarey, E., Geddes, C.G.R., Toth, C., Trines, R., Schroeder, C.B., Shadwick, B.A., Tilborg, J.V. & Faure, J. (2002). Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89, 174802/1–6.CrossRefGoogle Scholar
Malav, H., Maheshwari, K.P. & Choyal, Y. (2011). Analytical and numerical investigation of pulse-shape effect on the interaction of an ultrashort, intense, few-cycle laser pulse with a thin plasma layer. Laser Part. Beams 29, 4554.CrossRefGoogle Scholar
Malik, H.K. & Malik, A.K. (2012). Strong and collimated terahertz radiation by super-Gaussian lasers. Europhys. Lett. 100, 45001/1–5.CrossRefGoogle Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F., Mainfray, G., Dulieu, A., Jaquet, M.L., Malka, G. & Miquel, J.L. (1995). Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 29532956.CrossRefGoogle Scholar
Nuzzo, S., Zarcone, M., Ferrante, G. & Basile, S. (2000). A simple model of high harmonic generation in a plasma. Laser Part. Beams 18, 483487.CrossRefGoogle Scholar
Ostermayr, T., Petrovics, S., Iqbal, K., Klier, C., Ruhl, H., Nakajima, K.A., Deng, A., Zhang, X., Shen, B., Liu, J., Li, R., Xu, Z. & Tajima, T. (2012). Laser plasma accelerator driven by a super-Gaussian pulse. J. Plasma Physics 78, 447453.CrossRefGoogle Scholar
Salih, H.A., Sharma, R.P. & Rafat, M. (2004). Plasma wave and second-harmonic generation of intense laser beams due to relativistic effects. Phys. Plasmas 11, 3186/1–5.CrossRefGoogle Scholar
Schroeder, C.B., Esarey, E., Geddes, C.G.R., Toth, C.Shadwick, B.A., Tilborg, J.V., Faure, J. & Leemans, W.P. (2003). Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators. Phys. Plasmas 10, 20392046.CrossRefGoogle Scholar
Sullivan, A., Hamster, H., Gordon, S.P., Falcone, R.W. & Nathel, H. (1994). Propagation of intense, ultrashort laser pulses in plasmas. Opt. Lett. 19, 15441546.CrossRefGoogle ScholarPubMed
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Ting, A., Moore, C.I., Krushelnick, K., Manka, C., Esarey, E., Sprangle, P., Hubbard, R., Burris, H.R. & Baine, M. (1997) Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment. Phys. Plasmas 4, 18891899.CrossRefGoogle Scholar
Tochitsky, S.Y., Narang, R., Filip, C.V., Musumeci, P., Clayton, C.E., Yoder, R.B., Marsh, K.A., Rosenzweig, J.B., Pellegrini, C. & Joshi, C. (2004). Experiments on laser driven beatwave acceleration in a ponderomotively formed plasma channel. Phys. Plasmas 11, 28752881.CrossRefGoogle Scholar
Verboncoeur, J.P., Langdon, A.B. & Gladd, N.T. (1995). An object-oriented electromagnetic PIC code. Comp. Phys. Comm. 87, 199211.CrossRefGoogle Scholar
Zeng, G., Shen, B., Yu, W. & Xu, J. (1996). Relativistic harmonic generation excited in the ultrashort laser pulse regime. Phys. Plasmas 3, 42204224.CrossRefGoogle Scholar
Zhang, X., Shen, B., Ji, L., Wang, W., Xu, J., Yu, Y., Yi, L., Wang, X., Hafz, N.A. M. & Kulagin, V. (2012). Effect of pulse profile and chirp on a laser wakefield generation. Phys. Plasmas 19, 053103/1–7.CrossRefGoogle Scholar