Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T02:41:13.217Z Has data issue: false hasContentIssue false

Wakefield and stopping power of a hydrogen ion beam pulse with low drift velocity in hydrogen plasmas

Published online by Cambridge University Press:  23 March 2015

Ling-Yu Zhang
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou, China University of Chinese Academy of Sciences, Beijing, China
Xiao-Ying Zhao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou, China
Xin Qi*
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou, China
Guo-Qing Xiao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou, China
Wen-Shan Duan
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou, China
Lei Yang*
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou, China Department of Physics, Lanzhou University, Lanzhou, China
*
Address correspondence and reprint requests to: Xin Qi and Lei Yang, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou 730070, China. E-mail: [email protected], [email protected]
Address correspondence and reprint requests to: Xin Qi and Lei Yang, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou 730070, China. E-mail: [email protected], [email protected]

Abstract

A two-dimensional particle-in-cell (PIC) simulation is carried out to study the wakefield and stopping power for a hydrogen ion beam pulse with low drift velocity propagation in hydrogen plasmas. The plasma is assumed to be collisionless, uniform, non-magnetized, and in a steady state. Both the pulse ions and plasma particles are treated by the PIC method. The effects of the beam density on the wakefield and stopping power are then obtained and discussed. It is found that as the beam densities increase, the oscillation wakefield induced by the beam become stronger. Besides, the first oscillation wakefield behind the bunch is particularly stronger than others. Moreover, it is found that the stationary stopping power increases linearly with the increase of the beam density in the linear/semilinear region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boine-Frankenheim, O. & D'avanzo, J. (1996). Stopping power of ions in a strongly magnetized plasma. Phys. Plasmas 3, 792799.CrossRefGoogle Scholar
Boine-Frankenheim, O., Gjonaj, E., Petrov, F., Yaman, F., Weiland, T. & Rumolo, G. (2012). Energy loss and longitudinal wakefield of relativistic short proton bunches in electron clouds. Phys. Rev. ST Accel. Beams 15, 054402(1)054402(7).CrossRefGoogle Scholar
Butler, S.T. & Buckingham, M.J. (1962). Energy loss of a fast ion in a plasma. Phys. Rev. 126, 14.CrossRefGoogle Scholar
Chen, P., Dawson, J.M., Huff, R.W. & Katsouleas, T. (1985). Acceleration of electrons by the interaction of a bunched electron-beam with a plasma. Phys. Rev. L 54, 693696.CrossRefGoogle ScholarPubMed
D'avanzo, J., Hofmann, I. & Lontano, M. (1998). Charge dependence of nonlinear stopping power. Nucl. Instrum. Methods A 415, 632636.CrossRefGoogle Scholar
Deutsch, C. & Fromy, P. (1995). Correlated ion stopping in a dense classical plasma. Phys. Rev. E 51, 632641.CrossRefGoogle Scholar
Dietrich, K.G., Hoffmann, D.H.H., Boggasch, E., Jacoby, J., Wahl, H., Elfers, M., Haas, C.R., Dubenkov, V.P. & Golubev, A.A. (1992). Charge state of fast heavy-ions in a hydrogen plasma. Phys. Rev. L 69, 36233626.CrossRefGoogle Scholar
Franchetti, G., Hofmann, I., Fischer, W. & Zimmermann, F. (2009). Incoherent effect of space charge and electron cloud. Phys. Rev. ST Accel. Beams 12, 124401(1)124401(18).CrossRefGoogle Scholar
Goldman, S.R. & Hofmann, I. (1990). Electron cooling of high-Z ion-beams parallel to a guide magnetic-field. IEEE Trans. Plasma Sci. 18, 789796.CrossRefGoogle Scholar
Gryzinski, M. (1957). Stopping power of a medium for heavy charged particles. Phys. Rev. 107, 14711475.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hoffmann, D.H.H., Jacoby, J., Laux, W., Demagisteis, M., Boggasch, E., Spiller, P., Stockl, C., Tauschwitz, A., Weyrich, K., Chabot, M. & Gardes, D. (1994). Energy-loss of fast heavy-ions in plasmas. Nucl. Instrum. Methods B 90, 19.CrossRefGoogle Scholar
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2009). Dynamic polarization and energy dissipation for charged particles moving in magnetized two-component plasmas. Phys. Rev. E 79, 016405(1)016405(7).CrossRefGoogle ScholarPubMed
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2010). Wake effect and stopping power for a charged ion moving in magnetized two-component plasmas: Two-dimensional particle-in-cell simulation. Phys. Rev. E 82, 026404(1)026404(8).CrossRefGoogle ScholarPubMed
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2012). Time evolution and energy deposition for ion clusters injected into magnetized two-component plasmas. Phys. Rev. E 85, 016402(1)016402(2).CrossRefGoogle ScholarPubMed
Hu, Z.-H., Song, Y.-H., Zhao, Y.-T. & Wang, Y.-N. (2013). Modulation of continuous ion beams with low drift velocity by induced wakefield in background plasmas. Laser Part. Beams 31, 135140.CrossRefGoogle Scholar
Jacoby, J., Hoffmann, D.H.H., Laux, W., Muller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stockl, C., Wetzler, H. & Miyamoto, S. (1995). Stopping of heavy-ions in a hydrogen plasma. Phys. Rev. L 74, 15501553.CrossRefGoogle Scholar
Kaganovich, I.D., Startsev, E.A. & Davidson, C.D. (2004). Nonlinear plasma waves excitation by intense ion beams in background plasma. Phys. Plasmas 11, 35463552.CrossRefGoogle Scholar
Keinigs, R. & Jones, M.E. (1987). Two-dimensional dynamics of the plasma wakefield accelerator. Phys. Fluids B 30, 252263.CrossRefGoogle Scholar
Krushelnick, K., Clark, E.L., Allott, R., Beg, F.N., Danson, C.N., Machacek, A., Malka, V., Najmudin, Z., Neely, D., Norreys, P.A., Salvati, M.R., Santala, M.I.K., Tatarakis, M., Watts, I., Zepf, M. & Dangor, A.E. (2000). Ultrahigh-intensity laser-produced plasmas as a compact heavy ion injection source. IEEE Trans. Plasma Sci. 28, 11841189.CrossRefGoogle Scholar
Nieter, C. & Cary, J.R. (2004). VORPAL: A versatile plasma simulation code. J. Comput. Phys. 196, 448473.CrossRefGoogle Scholar
Oguri, Y., Hasegawa, J., Kaneko, J., Ogawa, M. & Horioka, K. (2005). Stopping of low-energy highly charged ions in dense plasmas. Nucl. Instrum. Methods A 544, 7683.CrossRefGoogle Scholar
Peter, T. & Meyertervehn, J. (1991). Energy-loss of heavy-ions in dense-plasma. 1. Linear and nonlinear Vlasov theory for the stopping power. Phys. Rev. A 43, 19982014.CrossRefGoogle Scholar
Renk, T.J., Mann, G.A. & Torres, G.A. (2008). Performance of a pulsed ion beam with a renewable cryogenically cooled ion source. Laser Part. Beams 26, 545554.CrossRefGoogle Scholar
Sorensen, A.H. & Bonderup, E. (1983). Electron cooling. Nucl. Instrum. Methods Phys. Res. 215, 2754.CrossRefGoogle Scholar
Takahashi, T., Kato, T., Kondoh, Y. & Iwasawa, N. (2004). Power deposition by neutral beam injected fast ions in field-reversed configurations. Phys. Plasmas 11, 38013807.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnuerer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.CrossRefGoogle Scholar
Thompson, E., Stork, D. & Deesch, H.P.L. (1993). The use of neutral beam heating to produce high-performance fusion plasmas, including the injection of tritium beams into the joint european torus (JET). Phys. Fluids B 5, 24682480.CrossRefGoogle Scholar
Zhao, Y., Hu, Z., Cheng, R., Wang, Y., Peng, H., Golubev, A., Zhang, X., Lu, X., Zhang, D., Zhou, X., Wang, X., Xu, G., Ren, J., Li, Y., Lei, Y., Sun, Y., Zhao, J., Wang, T., Wang, Y. & Xiao, G. (2012). Trends in heavy ion interaction with plasma. Laser Part. Beams 30, 679706.CrossRefGoogle Scholar
Zwicknagel, G. & Deutsch, C. (1997). Correlated ion stopping in plasmas. Phys. Rev. E 56, 970987.CrossRefGoogle Scholar
Zwicknagel, G., Reinhard, P.G., Seele, C. & Toepffer, C. (1996 a). Energy loss of heavy ions in strongly coupled plasmas. Fusion Eng. Des. 32–33, 523528.CrossRefGoogle Scholar
Zwicknagel, G., Toepffer, C. & Reinhard, P.G. (1996 b). Molecular dynamic simulations of ions in electron plasmas at strong coupling. Hyperfine Interact. 99, 285291.CrossRefGoogle Scholar
Zwicknagel, G., Toepffer, C. & Reinhard, P.G. (1999). Stopping of heavy ions in plasmas at strong coupling. Phys. Rep. 309, 117208.CrossRefGoogle Scholar