Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T23:35:13.388Z Has data issue: false hasContentIssue false

Volume compression and volume ignition of laser driven fusion pellets

Published online by Cambridge University Press:  09 March 2009

G. Kasotakis
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia.
L. Cicchitelli
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia.
H. Hora
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia.
R. J. Stening
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia.

Abstract

Volume compression and volume ignition of laser compressed pellets has an enormous advantage against spark ignition since the alpha self-heat substantially contributes as an additional stimulation of nuclear fusion reactions. We present here improved computations of volume ignition in agreement with the classical fact that the generated fusion energy is larger than the bremsstrahlung energy in DT only at temperatures above 4·5 keV. This result is in very close agreement with Kidder's (1974) values, and in agreement with recent computations of Mima et al. (1987). The extension of these calculations to higher densities and input energies results in the self-absorption of bremsstrahlung at an initial temperature of about 1 keV only, much below the classical 4·5 keV. A fuel burnup fraction above 80% is shown to be possible.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlstrom, H. G. 1983 Physics of Laser Fusion (Nat. Tech. Info. Service, Springfield, Va.)Google Scholar
Aleksandrova, I. V. et al. 1985, Laser and Part. Beams 3, 197.CrossRefGoogle Scholar
Atzeni, S., Caruso, A. & Pais, V. A. 1986 Laser and Part. Beams 4, 393.CrossRefGoogle Scholar
Basov, N. G. & Krokhin, O. N. 1983 3rd. Int. Quantum Electr. Conf.Paris.Febr.Google Scholar
Cicchitelli, L. et al. 1988 Laser and Part. Beams 6, 163.CrossRefGoogle Scholar
Dawson, J. M. 1964 Phys. Fluids 7, 981.CrossRefGoogle Scholar
Dragila, R., Maddever, R. A. M. & Luther-Davies, B. 1987 Phys. Rev. 1987, A36, 5292.Google Scholar
Eliezer, S., Ghatak, A. K. & Hora, H. 1986 Equations of State (Cambridge Univ. Press, Cambridge).Google Scholar
Eliezer, S. & Ludmirski, A. 1983 Laser and Part. Beams, 1, 251.CrossRefGoogle Scholar
Eliezer, S. & Hora, H. 1989 Phys. Report 172, 339.CrossRefGoogle Scholar
Feldbacher, R. 1987 The Barnbook DATLIB. (IAEA, Vienna).Google Scholar
Feldbacher, R. et al. 1988 Nucl. Instr. and Methods A271, 22.Google Scholar
Glasstone, S. & Loveberg, R. H. 1960 Controlled Thermonuclear Reactions (New York).Google Scholar
Goldsworthy, M. P. et al. 1986 IEEE Trans. Plasma Sc. PS-14, 823.Google Scholar
Goldsworthy, M. P. et al. 1989 Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna) paper IAEA-CN-50/B-4–6.Google Scholar
Grivet, P. & Bloembergen, N. Eds. 1964 Dunod, Paris, Vol. 2, p. 1373.Google Scholar
Min, Gu et al. 1987, Phys. Fluids 30, 1515.CrossRefGoogle Scholar
Hora, H. 1964 Inst. Plasma Phys. Garching, Rept. 6/23.Google Scholar
Hora, H. & Pfirsch, D. 1970 6th Int. Quantum Electr. Conf. Kyoto. Sept.), Conf. Digest(Kyoto, 1970), p. 10.Google Scholar
Hora, H. & Ray, P. S. 1978 Z. Naturforsch. 33A, 890.CrossRefGoogle Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas (Wiley, New York).Google Scholar
Hora, H. 1983 Atomkernergie 42, 7.Google Scholar
Hora, H. & Miley, G. H. 1984 Laser Focus 20 (No. 2), 59.Google Scholar
Hora, H. 1987 Z. Naturforsch. 42A, 1239.CrossRefGoogle Scholar
Hora, H. 1989 McGraw-Hill Yearbook to Encyclopedia of Sciences and Technology (McGraw-Hill, New York).Google Scholar
Kasotakis, G. et al. , 1989 Nucl. Instr. and Methods, In Press.Google Scholar
Kidder, R. E. 1974 Nuclear Fusion 14, 797.CrossRefGoogle Scholar
Lalousis, P. 1983 Ph.D. Thesis, Univ. of New South Wales, Kensington, Australia.Google Scholar
Lalousis, P. & Hora, H. 1983 Laser & Part. Beams 1, 283.CrossRefGoogle Scholar
Lin, Z. et al. 1986, Laser and Particle Beams 4, 223.Google Scholar
Maddever, R. A. M. 1988 Ph.D. Thesis, Austral. Nat. Univ., Canberra, 223.Google Scholar
Meyer-Ter-Vehn, J. 1982, Nuclear Fusion 22, 561.CrossRefGoogle Scholar
Miley, G. H. et al. 1988 (Aug.), Discussion results at the US–Japan Seminar, Honolulu.Google Scholar
Miley, G. H. 1989 Laser and Part. Beams 7, 411.CrossRefGoogle Scholar
Mima, S., Takabe, H. & Nakai, S. 1987 (Oct.) Conf. Report, Niu, K. ed., 1988 (IPPJ, Nagoya, February) p. 124.Google Scholar
Mima, K., Takabe, H. & Nakai, S. 1989 Laser and Part. Beams 7, 487.CrossRefGoogle Scholar
McNally, R. 1979 Oak Ridge Data.Google Scholar
Nakai, S. 1988 ILE-Quarterly Progress Report-87–22 No. 22 (ILE Osaka, Febr.) p. 3.Google Scholar
Nishihara, K. et al. 1986. Laser Interaction and Related Plasma Phenomena, Schwartz, H. et al. eds. (Plenum, New York), p. 395.Google Scholar
Nuckolls, J. H. 1982 Phys. Today 35 (no. 9), 24.CrossRefGoogle Scholar
Rozanov, V. B. 1987 (May), ECLIM, Prague, open discussion.Google Scholar
Schmalz, R. F. 1986 Phys. Fluids 29, 1389.CrossRefGoogle Scholar
Szichman, H. 1988 Phys. Fluids 31, 1702.CrossRefGoogle Scholar
Velarde, G. et al. 1986, Laser and Part. Beams 4, 349.CrossRefGoogle Scholar
Watteau, J. P. 1986 (Nov.) IAEA Conf.Kyoto. Priv. Comm.Google Scholar
Yamanaka, C. & Nakai, S. 1986a Nature 319, 757.CrossRefGoogle Scholar
Yamanaka, C., Nakai, S. et al. 1986b Phys. Rev. Lett. 56, 1575.CrossRefGoogle Scholar
Yamanaka, C., et al. 1986c Laser Interaction and Related Plasma Phenomena, Hora, H. & Miley, G. H. eds. (Plenum, New York), Vol. 7, p. 395.CrossRefGoogle Scholar