Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T18:58:28.141Z Has data issue: false hasContentIssue false

Uniformity of fuel target implosion in heavy ion fusion

Published online by Cambridge University Press:  09 July 2015

S. Kawata*
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan
K. Noguchi
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
T. Suzuki
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
T. Karino
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
D. Barada
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan
A.I. Ogoyski
Affiliation:
Department of Physics, Technical University of Varna, Ulitska, Varna, Bulgaria
Y.Y. Ma
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan
*
Address correspondence and reprint requests to: Shigeo Kawata, Graduate School of Engineering, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya 321-8585, Japan. E-mail: [email protected]

Abstract

In inertial confinement fusion the target implosion non-uniformity is introduced by a driver beams’ illumination non-uniformity, a fuel target alignment error in a fusion reactor, the target fabrication defect, etc. For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the requirement for the implosion uniformity is first discussed. The implosion uniformity should be less than a few percent. A study on the fuel hotspot dynamics is also presented and shows that the stagnating plasma fluid provides a significant enhancement of vorticity at the final stage of the fuel stagnation. Then non-uniformity mitigation mechanisms of the heavy-ion beam (HIB) illumination are also briefly discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF a wobbling HIB illumination was also introduced to realize a uniform implosion. In the wobbling HIBs illumination, the illumination non-uniformity oscillates in time and space on a HIF target. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs’ illumination non-uniformity by its smoothing effect on the HIB illumination non-uniformity and also by a growth mitigation effect on the Rayleigh–Taylor instability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abarzhi, S.I. (2010). Review of theoretical modelling approaches of Rayleigh–Taylor instabilities and turbulent mixing. Phil. Trans. R. Soc. A 368, 18091828.CrossRefGoogle ScholarPubMed
Arnold, R.C., Colton, E., Fenster, S., Foss, M., Magelssen, G. & Moretti, A. (1982). Utilization of high energy, small emittance accelerators for ICF target experiments. Nucl. Instrum. Meth. 199, 557561.CrossRefGoogle Scholar
Arnold, R.C. & Meyer-ter-Vehn, J. (1987). Inertial confinement fusion driven by heavy-ion beams. J. Rep. Prog. Phys. 50, 559606.CrossRefGoogle Scholar
Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Oxford Science Pub.CrossRefGoogle Scholar
Basko, M.M., Schlegel, T. & Maruhn, J. (2004). On the symmetry of cylindrical implosions driven by a rotating beam of fast ions. Phys. Plasmas 11, 15771588.CrossRefGoogle Scholar
Betti, R., McCrory, R.L. & Verdon, C.P. (1993). Stability analysis of unsteady ablation fronts. Phys. Rev. Lett. 71, 31313134.CrossRefGoogle ScholarPubMed
Bodner, S.E. (1974). Rayleigh–Taylor instability and laser-pellet fusion. Phys. Rev. Lett. 33, 761764.CrossRefGoogle Scholar
Bodner, S.E. (1981). Critical elements of high gain laser fusion. J. Fusion Energy 1, 221240.CrossRefGoogle Scholar
Boris, J.P. (1977). Dynamic stabilization of the imploding shell Rayleigh–Taylor instability. Comments Plasma Phys. Cont. Fusion 3, 113.Google Scholar
Emery, M.H., Orens, J.H., Gardner, J.H. & Boris, J.P. (1982). Influence of nonuniform laser intensities on ablatively accelerated targets. Phys. Rev. Lett. 48, 253256.CrossRefGoogle Scholar
Ertel, H. (1942). Ein neuer hydrodynamischer Wirbelsatz. Meteorolog. Zeitschr. Braunschweig 59, 277281.Google Scholar
Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Dӧppner, T., Hinkel, D.E., Berzak Hopkins, L.F., Kline, J.L., Le Pape, S., Ma, T., MacPhee, A.G., Milovich, J.L., Pak, A., Park, H.S., Patel, P.K., Remington, B.A., Salmonson, J.D., Springer, P.T. & Tommasini, R. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343348.Google Scholar
Kawata, S. (2012). Dynamic mitigation of instabilities. Phys. Plasmas 19, 024503, 13.CrossRefGoogle Scholar
Kawata, S., Iizuka, Y., Kodera, Y., Ogoyski, A.I. & Kikuchi, T. (2009). Robust fuel target in heavy ion inertial fusion. Nucl. Instr. Meth. A 606, 152156.CrossRefGoogle Scholar
Kawata, S., Kurosaki, T., Noguchi, K., Suzuki, T., Koseki, S., Barada, D., Ma, Y.Y., Ogoyski, A.I., Barnard, J.J. & Logan, B.G. (2013). Wobblers and Rayleigh–Taylor instability mitigation in HIF target implosion. Nucl. Instr. Meth. A 733, 211215.CrossRefGoogle Scholar
Kawata, S. & Niu, K. (1984). Effect of nonuniform implosion of target on fusion parameters. J. Phys. Soc. Jpn. 53, 34163426.CrossRefGoogle Scholar
Kawata, S., Sato, T., Teramoto, T., Bandoh, E., Masubichi, Y., Watanabe, H. & Takahashi, I. (1993). Radiation effect on pellet implosion and Rayleigh–Taylor instability in light-ion beam inertial confinement fusion. Laser Part. Beams 11, 757768.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1959). Fluid Mechanic. Oxford: Oxford Pergamon Press.Google Scholar
Lindl, J.D. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.CrossRefGoogle Scholar
Logan, B.G., Perkins, L.J. & Barnard, J.J. (2008). Direct drive heavy-ion-beam inertial fusion at high coupling efficiency. Phys. Plasmas 15, 072701, 17.CrossRefGoogle Scholar
Miyazawa, K., Ogoyski, A.I., Kawata, S. & Someya, T. (2005). Robust heavy-ion-beam illumination against a direct-drive-pellet displacement in inertial confinement fusion. Phys. Plasmas 12, 122702, 19.CrossRefGoogle Scholar
Nuckolls, J., Wood, L., Thiessen, A. & Zimmmerman, G. (1972). Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature 239, 139142.CrossRefGoogle Scholar
Ogoyski, A.I., Kawata, S. & Popov, P.H. (2010). Code OK3 - an upgraded version of OK2 with beam wobbling function. Compt. Phys. Commun. 181, 13321333.CrossRefGoogle Scholar
Park, H.-S., Hurricane, O.A., Callahan, D.A., Casey, T.D., Dewald, E.L., Dittrich, T.R., Dӧppner, T., Hinkel, D.E., Berzak Hopkins, L.F., Le Pape, S., Ma, T., Patel, P.K., Remington, B.A., Robey, H.F. & Salmonson, J.D. (2014). High-Adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility. Phys. Rev. Lett. 112, 055001.CrossRefGoogle ScholarPubMed
Petzoldt, R.W. (1998). IFE target injection and tracking experiment. Fusion Technol. 34, 831839.CrossRefGoogle Scholar
Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M. (2003a). Generation of a hollow ion beam: Calculation of the rotation frequency required to accommodate symmetry constraint. Phys. Rev. E 67, 017501, 13.CrossRefGoogle ScholarPubMed
Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2003b). Symmetry analysis of cylindrical implosions driven by high-frequency rotating ion beams. Plasma Phys. Control. Fusion 45, 17331745.CrossRefGoogle Scholar
Piriz, A.R., Prieto, G.R., Diaz, I.M. & Cela, J.J.L. (2010). Dynamic stabilization of Rayleigh–Taylor instability in Newtonian fluids. Phys. Rev. E 82, 026317, 111.CrossRefGoogle ScholarPubMed
Piriz, A.R., Piriz, S.A. & Tahir, N.A. (2011). Dynamic stabilization of classical Rayleigh–Taylor instability. Phys. Plasmas 18, 092705, 19.Google Scholar
Qin, H., Davidson, R.C., & Logan, B.G. (2010). Centroid and envelope dynamics of high-intensity charged-particle beams in an external focusing lattice and oscillating wobbler. Phys. Rev. Lett. 104, 254801.CrossRefGoogle Scholar
Skupsky, S. & Lee, K. (1983). Uniformity of energy deposition for laser driven fusion. J. Appl. Phys. 54, 36623671.CrossRefGoogle Scholar
Someya, T. (2006). Research on final beam transport and beam-target interaction in heavy ion inertial confinement fusion. PhD Thesis. Japan: Utsunomiya University.Google Scholar
Someya, T., Miyazawa, K., Kikuchi, T. & Kawata, S. (2006). Direct-indirect mixture implosion in heavy ion fusion. Laser Part. Beams 24, 359369.CrossRefGoogle Scholar
Someya, T., Ogoyski, A.I., Kawata, S. & Sasaki, T. (2004). Heavy-ion beam illumination on a direct-driven pellet in heavy-ion inertial fusion. Phys. Rev. ST Accel. Beams 7, 044701, 113.CrossRefGoogle Scholar
Takabe, H., Mima, K., Montierth, L. & Morse, R.L. (1985). Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids 28, 36763682.CrossRefGoogle Scholar
Troyon, F. & Gruber, R. (1971). Theory of the dynamic stabilization of the Rayleigh–Taylor instability. Phys. Fluids 14, 20692073.CrossRefGoogle Scholar
Weibel, E.S. (1959). Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 8384.CrossRefGoogle Scholar
Wolf, G.H. (1970). Dynamic stabilization of the interchange instability of a liquid-gas interface. Phys. Rev. Lett. 24, 444446.CrossRefGoogle Scholar