Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T17:10:29.992Z Has data issue: false hasContentIssue false

Ultrashort-pulse MeV positron beam generation from intense Compton-scattering γ-ray source driven by laser wakefield acceleration

Published online by Cambridge University Press:  20 December 2012

W. Luo*
Affiliation:
College of Science, National University of Defense Technology, Changsha, China College of Nuclear Science and Technology, University of South China, Hengyang, China
H.B. Zhuo*
Affiliation:
College of Nuclear Science and Technology, University of South China, Hengyang, China Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, China
Y.Y. Ma
Affiliation:
College of Nuclear Science and Technology, University of South China, Hengyang, China Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, China
X.H. Yang
Affiliation:
College of Nuclear Science and Technology, University of South China, Hengyang, China
N. Zhao
Affiliation:
College of Nuclear Science and Technology, University of South China, Hengyang, China
M.Y. Yu
Affiliation:
Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, China Theoretical Physics I, Ruhr University, Bochum, Germany
*
Address correspondence and reprint requests to: H.B. Zhuo and W. Luo, College of Science, National University of Defense Technology, Changsha 410073, China. E-mail: [email protected], [email protected]
Address correspondence and reprint requests to: H.B. Zhuo and W. Luo, College of Science, National University of Defense Technology, Changsha 410073, China. E-mail: [email protected], [email protected]

Abstract

Intense Compton-scattering γ-ray radiation driven by laser wakefield acceleration (LWFA) and generation of ultrashort positron beams are investigated by Monte Carlo simulation. Using an LWFA driven GeV electron bunch and a 45 femtosecond, 90 mJ/pulse, and 10 Hz Ti:Sapphire laser for driving the Compton scattering, fs γ-ray pulses were generated. The latter have a flux of ≥108/s, peak brightness of ≥1020 photons/(s mm2 mrad2 0.1% bandwidth), and photon energy of 5.9 to 23.2 MeV. The γ-ray pulses then impinge on a thin high-Z target. More than 107 positrons/s in the form of sub-100 fs pulses at several MeV can be produced. Such ultrashort positron pulses can be useful as the pump-probe type positron annihilation spectroscopy as well as in other applications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostinelli, S. & Geant Collaboration. (2003). Geant4 – A simulation toolkit. Nucl. Instr. Meth. A 506, 250.CrossRefGoogle Scholar
Andreev, A.A. & Platonov, K.Yu. (2000). Hard X-ray generation and particle production via the relativistic-intensity laser pulse interaction with a solid target. Laser Part. Beams 18, 8186.CrossRefGoogle Scholar
Brown, W.J. & Hartemann, F.V. (2004). Three-dimensional time and frequency-domain theory of femtosecond x ray pulse generation through Thomson scattering. Phys. Rev. ST Accel. Beams 7, 060703.Google Scholar
Catravas, P., Esarey, E. & Leemans, W.P. (2001). Femtosecond x rays from Thomson scattering using laser wakefield accelerators. Meas. Sci. Technol. 12, 18281834.CrossRefGoogle Scholar
Chen, H., Meyerhofer, D.D., Wilks, S.C., Cauble, R., Dollar, F., Falk, K., Gregori, G., Hazi, A., Moses, E.I., Murphy, C.D., Myatt, J., Seely, J., Shepherd, R., Spitkovsky, A., Stoeckl, C., Szabo, C.I., Tommasini, R., Zulick, C. & Beiersdorfer, P. (2011). Towards laboratory produced relativistic electron–positron pair plasmas. High Ener. Density Phys. 7, 225.Google Scholar
Chouffani, K., Harmon, F., Wells, D., Jones, J. & Lancaster, G. (2006). Laser-Compton scattering as a tool for electron beam diagnostics. Laser Part. Beams 24, 411419.CrossRefGoogle Scholar
Cowan, T.E., Perry, M.D., Key, M.H., Ditmire, T.R., Hatchett, S.P., Henry, E.A., Moody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kühl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature (London) 431, 541544.CrossRefGoogle ScholarPubMed
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. & Malka, V. (2006). Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature (London) 444, 737.CrossRefGoogle ScholarPubMed
Geddes, C.G.R., Toth, Cs., Tilbory, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nat. 431, 538.Google ScholarPubMed
Gidley, D.W., Peng, H.-G. & Vallery, R.S. (2006). Positron annihilation as a method to characterize porous materials. Ann. Rev. Mater. Res. 36, 4979.CrossRefGoogle Scholar
Hartemann, F.V., Tremaine, A.M., Anderson, S.G., Barty, C.P.J., Betts, S.M., Booth, R., Brown, W.J., Crane, J.K., Cross, R.R., Gibson, D.J., Fittinghoff, D.N., Kuba, J., Sage, G.P.Le, Slaughter, D.R., Wootton, A.J., Hartouni, E.P., Springer, P.T., Rosenzweig, J.B. & Kerman, A.K. (2004). Characterization of a bright, tunable, ultrafast Compton scattering X-ray source. Laser Part. Beams 22, 221244.CrossRefGoogle Scholar
Hirose, T., Dobashi, K., Kurihara, Y., Muto, T., Omori, T., Okugi, T., Sakai, I., Urakawa, J. & Washio, M. (2000). Polarized positron source for the linear collider, JLC. Nucl. Instru. and Meth. A 455, 1524.CrossRefGoogle Scholar
Hugenschmidt, C., Lowe, B., Mayer, J., Piochacz, C., Pikart, P., Repper, R., Stadlbauer, M. & Schreckenbach, K. (2008). Unprecedented intensity of a low-energy positron beam. Nucl. Instr. and Meth. A 593, 616.CrossRefGoogle Scholar
Hunt, A.W., Cassidy, D.B., Selim, F.A., Haakenaasen, R., Cowan, T.E., Howell, R.H., Lynn, K.G. & Golovchenko, J.A. (1999). Spatial sampling of crystal electrons by in-flight annihilation of fast positrons. Nat. 402, 157.Google Scholar
Jean, Y.C., Mallon, P.E. & Schrader, D.M. (2003). Principles and Application of Positron & Positronium Chemistry. Hackensack: World Scientific.CrossRefGoogle Scholar
Kurihara, T., Yagishita, A., Enomoto, A., Kobayashi, H., Shidara, T., Shirakawa, A., Nakahara, K., Saitou, H., Inoue, K., Nagashima, Y., Hyodo, T., Nagai, Y., Hasegawa, M., Inoue, Y., Kogure, Y. & Doyama, M. (2000). Intense positron beam at KEK. Nucl. Instr. Meth. B 171, 164.CrossRefGoogle Scholar
Leemans, W.P., Nagler, B., Gonsalves, A. J., Toth, Cs., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696699.CrossRefGoogle Scholar
Liang, E.P., Wilks, S.C. & Tabak, M. (1998). Pair production by ultraintense lasers. Phys. Rev. Lett. 81, 4887.CrossRefGoogle Scholar
Lundh, O., Lim, J., Rechatin, C., Ammoura, L., Ben-Ismail, A., Davoine, X., Gallot, G., Goddet, J-P., Lefebvre, E., Malka, V. & Faure, J. (2011). Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator. Nat. Phys. 7, 219.CrossRefGoogle Scholar
Luo, W., Xu, W., Pan, Q.Y., An, Z.D., Cai, X.L., Fan, G.T., Fan, G.W., Li, Y.J., Xu, B.J., Yan, Z. & Yang, L.F. (2011). A 4D Monte Carlo laser-Compton scattering simulation code for the characterization of the future energy-tunable SLEGS. Nucl. Instr. and Meth. A 660, 108.CrossRefGoogle Scholar
Luo, W., Xu, W., Pan, Q.Y., Cai, X.Z., Chen, Y.Z., Fan, G.T., Fan, G.W., Li, Y.J., Liu, W.H., Lin, G.Q., Ma, Y.G., Shen, W.Q., Shi, X.C., Xu, B.J., Xu, J.Q., Xu, Y., Zhang, H.O., Yan, Z., Yang, L. F. & Zhao, M. H. (2010). X-ray generation from slanting laser-Compton scattering for future energy-tunable Shanghai laser electron gamma source. Appl. Phys. B: Lasers Opt. 101, 761.CrossRefGoogle Scholar
Ma, Y.Y., Kawata, S., Yu, T.P., Gu, Y.Q., Sheng, Z.M., Yu, M.Y., Zhuo, H.B., Liu, H.J., Yin, Y., Takahashi, K., Xie, X.Y., Liu, J. X., Tian, C.L. & Shao, F.Q. (2012). Electron bow-wave injection of electrons in laser-driven bubble acceleration. Phys. Rev. E 85, 046403.CrossRefGoogle ScholarPubMed
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nat. 431, 535538.CrossRefGoogle ScholarPubMed
Mills, A.P. (1982). Surface analysis and atomic physics with slow positron beams. Sci. 218, 335.Google ScholarPubMed
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Sci. 264, 917924.CrossRefGoogle ScholarPubMed
Phuoc, K.Ta., Corde, S., Thaury, C., Malka, V., Tafzi, A., Goddet, J.P., Shah, R.C., Sebban, S. & Rousse, A. (2012). All-optical Compton gamma-ray source. Nat. Photon. 6, 308.CrossRefGoogle Scholar
Pogoelsky, I.V., Ben-Zvi, I., Hirose, T., Kashiwagi, S., Yakimenko, V., Kusche, K., Siddons, P., Skaritka, J., Kumita, T., Tsunemi, A.Omori, T., Urakawa, J., Washio, M., Yokoya, K., Okugi, T., Liu, Y., He, P. & Cline, D. (2000). Demonstration of 8 × 1018photons/second peaked at 1.8 Å in a relativistic Thomson scattering experiment. Phys. Rev. Spec. Topics. Accel. Beams 3, 090702.Google Scholar
Raichle, M.E. (1985). Positron emission tomography: Progress in brain imaging. Nat. 317, 574576.CrossRefGoogle ScholarPubMed
Rossi, B. (1952). High energy particles. (Englewood Cliffs), New Jersey: Prentice-Hall, Inc.Google Scholar
Schultz, P.J. & Lynn, K.G. (1988). Interaction of positron beams with surfaces, thin films, and interfaces. Rev. Mod. Phys. 60, 701779.CrossRefGoogle Scholar
Schwoerer, H., Liesfeld, B., Schlenvoit, H.-P., Amthor, K.-U. & Sauerbrey, R. (2006). Thomson-backscattered X rays from laser-accelerated electrons. Phys. Rev. Lett. 96, 014802.CrossRefGoogle ScholarPubMed
Shen, B. & Yu, M.Y. (2002). High-intensity laser-field amplification between two foils. Phys. Rev. Lett. 89, 275004.CrossRefGoogle ScholarPubMed
Surko, C.M., Leventhal, M. & Passner, A. (1989). Positron plasma in the laboratory. Phys. Rev. Lett. 62 901.CrossRefGoogle ScholarPubMed
Taira, T., Adachi, M., Zen, H., Katoh, M., Yamamoto, N., Hosaka, M., Takashima, Y., Soda, K. & Tanikawa, T. (2010). Generation of ultra-short gamma-ray pulses by laser Compton scattering in an electron storage ring. Proceedings of IPAC’10, Kyoto, Japan. TUPD091, 2117.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar