Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T00:52:02.210Z Has data issue: false hasContentIssue false

Ultra-bright keV X-ray source generated by relativistic femtosecond laser pulse interaction with thin foils and its possible application for HEDS investigations

Published online by Cambridge University Press:  05 July 2017

A.Y. Faenov*
Affiliation:
Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
T.A. Pikuz
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia PPC and Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka, Japan
G.A. Vergunova
Affiliation:
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
S.A. Pikuz
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia National Research Nuclear University MEPhI, Moscow 115409, Russia
I.Y. Skobelev
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia National Research Nuclear University MEPhI, Moscow 115409, Russia
A. Andreev
Affiliation:
Max Born Institute, Berlin 12489, Max-Born str. 2a, Berlin, Germany ELI-ALPS, Szeged, Hungary
A. Zhidkov
Affiliation:
PPC and Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka, Japan
R. Kodama
Affiliation:
Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan PPC and Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka, Japan
*
Address correspondence and reprint requests to: A.Y. Faenov, Open and Transdisciplinary Research Iniatives, Osaka University, Suita, Osaka, Japan. E-mail: [email protected]

Abstract

It was shown (Faenov et al., 2015b) that the energy of femtosecond laser pulses with relativistic intensity approaching to ~1021 W/cm2 is efficiently converted to X-ray radiation and produces exotic states in solid density plasma periphery. We propose and show by one-dimensional two-temperature hydrodynamic modeling, that applying two such unique ultra-bright X-ray sources with intensities above 1017 W/cm2 – allow to generate shock waves with strength of up to some hundreds Mbar, which could give new opportunities for studies of matter in extreme conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Colgan, J., Abdallah, J. Jr., Faenov, A.Y., Pikuz, S.A., Wagenaars, E., Booth, N., Culfa, O., Dance, R.J., Evans, R.G., Gray, R.J., Kaempfer, T., Lancaster, K.L., McKenna, P., Rossall, A.L., Skobelev, I.Y., Schulze, K.S., Uschmann, I., Zhidkov, A.G. & Woolsey, N.C. (2013). Exotic dense matter states pumped by relativistic laser plasma in the radiation dominant regime. Phys. Rev. Lett 110, 125001.CrossRefGoogle ScholarPubMed
Colgan, J., Faenov, A.Y., Pikuz, S.A., Tubman, E., Butler, N.M.H., Abdallah, J. Jr., Dance, R.J., Pikuz, T.A., Skobelev, I.Y., Alkhimova, M.A., Booth, N., Green, J., Gregory, C., Andreev, A., Lӧtz, R., Uschmann, I., Zhidkov, A., Kodama, R., McKenna, P. & Woolsey, N. (2016). Evidence of high-n hollow-ion emission from Si ions pumped by ultraintense X-rays from relativistic laser plasma. EPL 114, 35001.Google Scholar
Drake, R.P. (2006). High-Energy-Density Physics: Fundamentals. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Endo, T., Shiraga, H., Shihoyama, K. & Kato, Y. (1988). Generation of a shock wave by soft-X-ray-driven ablation. Phys. Rev. Lett. 60, 10221025.CrossRefGoogle ScholarPubMed
Faenov, A.Y., Colgan, J., Hansen, S.B., Zhidkov, A., Pikuz, T.A., Nishiuchi, M., Pikuz, S.A. Jr., Skobelev, I.Y., Abdallah, J. Jr., Sakaki, H., Sagisaka, A., Pirozhkov, A.S., Ogura, K., Fukuda, Y., Kanasaki, M., Hasegawa, N., Nishikino, M., Kando, M., Watanabe, Y., Kawachi, T., Masuda, S., Hosokai, T., Kodama, R. & Kondo, K. (2015 a). Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser. Sci. Rep. 5, 13436.Google Scholar
Faenov, A.Y., Inogamov, N.A., Zhakhovskii, V.V., Khokhlov, V.A., Nishihara, K., Kato, Y., Tanaka, M., Pikuz, T.A., Kishimoto, M., Ishino, M., Nishikino, M., Nakamura, T., Fukuda, Y., Bulanov, S.V. & Kawachi, T. (2009). Low-threshold ablation of dielectric irradiated by picosecond soft X-ray laser pulses. Appl. Phys. Lett. 94, 231107.Google Scholar
Faenov, A.Y., Skobelev, I.Y., Pikuz, T.A., Pikuz, S.A. Jr., Kodama, R. & Fortov, V.E. (2015 b). Diagnostics of warm dense matter by high-resolution X-ray spectroscopy of hollow ions. Laser Part. Beams 33, 2739.Google Scholar
Fortov, V.E. (2016). Extreme States of Matter. High Energy Density Physics. 2nd edn. Switzerland: Springer International Publishing.Google Scholar
Fortov, V.E., Dyabilin, K.S., Lebedev, M.E., Smirnov, V.P. & Grabovskij, E.V. (1996). Shock wave excitation by soft X-rays. Laser Part. Beams 14, 789792.CrossRefGoogle Scholar
Fournier, K.B., Brown, C.G. Jr., Yeoman, M.F., Fisher, J.H., Seiler, S.W., Hinshelwood, D., Compton, S., Holdener, F.R., Kemp, G.E., Newlander, C.D., Gilliam, R.P., Froula, N., Lilly, M., Davis, J.F., Lerch, M.A., & Blue, B.E. (2016). X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility. Rev. Sci. Instrum. 87, 11D421.Google Scholar
Govorun, T.K., Evseev, G.A. & Mishchenko, T.V. (1986). The RADIAN Program for the Modeling of One-Dimensional Spherically Symmetric Tasks of the Radiation Gas Dynamics Preprint No. 176, IPM im. M. V. Keldysha AN SSSR. Moscow: Keldysh Institute of Applied Mathematics of the Academy of Sciences of the Soviet Union.Google Scholar
Hansen, S.B., Colgan, J., Faenov, A.Y., Abdallah, J. Jr., Pikuz, S.A. Jr., Skobelev, I.Y., Wagenaars, E., Booth, N., Culfa, O., Dance, R.J., Tallents, G.J., Evans, R.G., Gray, R.J., Kaempfer, T., Lancaster, K.L., Mckenna, P., Rossall, A.K., Schulze, K.S., Uschmann, I., Zhidkov, A.G. & Woolsey, N.C. (2014). Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma. Phys. Plasmas 21, 031213.Google Scholar
Inogamov, N.A., Faenov, A.Y., Zhakhovsky, V.V., Pikuz, T.A., Skobelev, I.Y., Petrov, Y.V., Khokhlov, V.A., Shepelev, V.V., Anisimov, S.I., Fortov, V.E., Fukuda, Y., Kando, M., Kawachi, T., Nagasono, M., Ohashi, H., Yabashi, M., Tono, K., Senda, Y., Togashi, T. & Ishikawa, T. (2011). Two-temperature warm dense matter produced by ultrashort extreme vacuum ultraviolet-free electron laser (EUV-FEL) pulse. Contrib. Plasma Phys. 51, 419426.Google Scholar
Ishino, M., Faenov, A.Y., Tanaka, M., Hasegawa, N., Nishikino, M., Tamotsu, S., Pikuz, T.A., Inogamov, N.A., Zhakhovsky, V.V., Skobelev, I.Y., Fortov, V.E., Khohlov, V.A., Shepelev, V.V., Ohba, T., Kaihori, T., Ochi, Y., Imazono, T. & Kawachi, T. (2011). Nanoscale surface modifications and formation of conical structures at aluminum surface induced by single shot exposure of soft X-ray laser pulse. J. Appl. Phys. 109, 013504.Google Scholar
Ishino, M., Faenov, A.Y., Tanaka, M., Tamotsu, S., Hasegawa, N., Nishikino, M., Pikuz, T.A., Kaihori, T. & Kawachi, T. (2013). Observations of surface modifications induced by the multiple pulse irradiation using a soft picosecond X-ray laser beam. Appl. Phys. A 110, 179188.Google Scholar
Kaiser, N.M., Meyer-ter-Vehn, J. & Ramis, R. (1991). Numerical study of an X-ray driven carbon foil. Laser Part. Beams 9, 759768.Google Scholar
Kiriyama, H., Mori, M., Nakai, Y., Shimomura, T., Sasao, H., Tanoue, M., Kanazawa, S., Wakai, D., Sasao, F., Okada, H., Daito, I., Suzuki, M., Kondo, S., Kondo, K., Sugiyama, A., Bolton, P.R., Yokoyama, A., Daido, H., Kawanishi, S., Kimura, T. & Tajima, T. (2010). High temporal and spatial quality petawatt-class Ti:Sapphire chirped-pulse amplification laser system. Opt. Lett. 35, 14971499.Google Scholar
Kiriyama, H., Mori, M., Pirozhkov, A.S., Ogura, K., Sagisaka, A., Kon, A., Eriskepov, T.Z., Hayashi, Y., Kotaki, H., Kanasaki, M., Sakaki, H., Fukuda, Y., Koga, J., Nishiuchi, M., Kando, M., Bulanov, S.V., Kondo, K., Bolton, P.R., Slezak, O., Vojna, D., Sawicka-Chyla, M., Jambunathan, V. & Mocek, T. (2015). High-contrast, high-intensity Petawatt-class laser and applications. IEEE J. Sel. Top. Quantum Electron. 21, 232249.Google Scholar
Kodama, R. (1992). Study of X-ray laser interaction plasmas. Laser Part. Beams 10, 821826.Google Scholar
Koyama, T., Yumoto, H., Senba, Y., Tono, K., Sato, T., Togashi, T., Inubushi, Y., Katayama, T., Kim, J., Matsuyama, S., Mimura, H., Yabashi, M., Yamauchi, K., Ohashi, H. & Ishikawa, T. (2013). Investigation of ablation thresholds of optical materials using 1-μm-focusing beam at hard Xray free electron laser. Opt. Express 21, 15382.Google Scholar
Nikiforov, A.F., Novikov, V.G. & Uvarov, V.B. (2000). Quantum–Statistical Models of High-Temperature Plasma. Moscow: Fizmatlit [in Russian].Google Scholar
Pikuz, S.A., Skobelev, I.Y., Alkhimova, M.A., Pokrovskii, G.V., Colgan, J., Pikuz, T.A., Faenov, A.Y., Soloviev, A.A., Burdonov, K.F., Eremeev, A.A., Sladko, A.D., Osmanov, R.R., Starodubtsev, M.V., Ginzburg, V.N., Kuz’min, A.A., Sergeev, A.M., Fuchs, J., Khazanov, E.A., Shaikin, A.A., Shaikin, I.A. & Yakovlev, I.V. (2017). Formation of a plasma with the determining role of radiative processes in thin foils irradiated by a pulse of the PEARL subpetawatt laser. JETP Letters 105, 1317.Google Scholar
Pikuz, S.A. Jr., Faenov, A.Y., Colgan, J., Dance, R.J., Abdallah, J., Wagenaars, E., Booth, N., Culfa, O., Evans, R.G., Gray, R.J., Kaempfer, T., Lancaster, K.L., Mckenna, P., Rossall, A.L., Skobelev, I.Y., Schulze, K.S., Uschmann, I., Zhidkov, A.G. & Woolsey, N.C. (2013). Measurement and simulations of hollow atom X-ray spectra of solid-density relativistic plasma created by high-contrast PW optical laser pulses. High Energy Density Phys. 9, 560.Google Scholar
Skobelev, I.Y., Faenov, A.Y., Pikuz, T.A. & Fortov, V.E. (2012). Hollow ions spectra in high density laser plasma. Phys.-Usp. 182, 9.Google Scholar
Starikov, S.V., Faenov, A.Y., Pikuz, T.A., Skobelev, I.Y., Fortov, V.E., Tamotsu, S., Ishino, M., Tanaka, M., Hasegawa, N., Nishikino, M., Kaihori, T., Imazono, T., Kando, M. & Kawachi, T. (2014). Soft picosecond X-ray laser nanomodification of gold and aluminum surfaces. Appl. Phys. B 116, 10051016.CrossRefGoogle Scholar
Vinko, S.M., Ciricosta, O., Cho, B.I., Engelhorn, K., Chung, H.-K., Brown, C.R.D., Burian, T., Chalupský, J., Falcone, R.W., Graves, C., Hájková, V., Higginbotham, A., Juha, L., Krzywinski, J., Lee, H.J., Messerschmidt, M., Murphy, C.D., Ping, Y., Scherz, A., Schlotter, W., Toleikis, S., Turner, J.J., Vysin, L., Wang, T., Wu, B., Zastrau, U., Zhu, D., Lee, R.W., Heimann, P.A., Nagler, B. & Wark, J.S. (2012). Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482, 5962.Google Scholar
Von Der Linde, D., Sokolowski-Tinten, K., Blome, Ch., Dietrich, C., Zhou, P., C. Tarasevitch, A., Cavalleri, A., Siders, C.W., Barty, C.P.J., Squier, J., Wilson, K.R., Uschmann, I. & Förster, E. (2001). Generation and application of ultrashort X-ray pulses. Laser Part. Beams 19, 1522.Google Scholar
Yoneda, H., Inubush, I.Y., Yabashi, M., Katayama, T., Ishikawa, T., Ohashi, H., Yumoto, H., Yamauchi, K., Mimura, H. & Kitamura, H. (2014). Saturable absorption of intense hard X-rays in iron. Nat. Commun. 5, 5080.Google Scholar
Zel'dovich, Y.B. & Raizer, Y.P. (1966) Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York: Academic Press. Inc.Google Scholar