Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T02:16:52.072Z Has data issue: false hasContentIssue false

Twisted modes instability of electron–positron shell interacted with moving ion background

Published online by Cambridge University Press:  18 August 2017

D. Nobahar
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Avenue, Tehran 15614, Iran
K. Hajisharifi*
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Avenue, Tehran 15614, Iran
H. Mehdian
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Avenue, Tehran 15614, Iran
*
*Address correspondence and reprint requests to: K. Hajisharifi, Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Avenue, Tehran 15614, Iran. E-mail: [email protected]

Abstract

In this paper, the instability of electrostatic twisted modes carrying orbital angular momentum in the moving electron–positron–ion plasma is investigated. In the kinetic theory approach, the general dispersion relation of twisted modes is derived by using Laguerre–Gaussian perturbed distribution function and electrostatic potential in the paraxial limit. Utilizing the obtained general dispersion relation for a specific case of electron–positron (e–p) shell with temperature anisotropy interacted with moving ion background, the effects of angular mode number, electrons and positrons temperature, and positron concentration on the group velocity and instability growth rate of twisted waves are illustrated, numerically. The results of the present investigation will greatly attribute to the understanding of e–p jet dynamic in astrophysical environments and laboratory experiments where the twisted modes can play a central role as a perturbed term.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, S., Davies, J.R. & Mendonca, J.T. (2010). Inverse faraday effect with linearly polarized laser pulses. Phys. Rev. Lett. 105, 035001.Google Scholar
Ali Shan, S. & Saleem, H. (2009). Kinetic effects on streaming instabilities in electron–positron-ion plasmas. Phys. Plasmas 16, 022111.Google Scholar
Ali Shan, S., Saleem, H. & Sajid, M. (2008). Streaming instabilities in multicomponent interstellar clouds. Phys. Plasmas 15, 072904.Google Scholar
Amato, E. & Arons, J. (2006). Heating and nonthermal particle acceleration in relativistic, transverse magnetosonic shock waves in proton–electron–positron plasmas. Astrophys. J. 653, 325338.Google Scholar
Arshad, K., Lazar, M., Mahmood, Sh., Ur-Rehman, A. & Poedts, S. (2017). Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas. Plasma Phys. 24, 033701.Google Scholar
Ayub, M.K., Ali, S. & Mendonca, J.T. (2011). Phonons with orbital angular momentum. Phys. Plasmas 18, 102117.CrossRefGoogle Scholar
Baluku, T.K. & Hellberg, M.A. (2011). Ion acoustic solitary waves in an electron–positron–ion plasma with non-thermal electrons. Plasma Phys. Control. Fusion 53, 095007.Google Scholar
Berezhiani, V.I., El-Ashry, M.Y. & Mofiz, U.A. (1994). Theory of strong-electromagnetic-wave propagation in an electron–positron–ion plasma. Phys. Rev. E 50, 448.Google Scholar
Buneman, O. (1958). Instability, turbulence, and conductivity in current-carrying plasma. Phys. Rev. Lett. 1, 119.CrossRefGoogle Scholar
Chen, H., Nakai, M., Sentoku, Y., Arikawa, Y., Azechi, H., Fujioka, S., Keane, C., Kojima, S., Goldstein, W., Maddox, B.R., Miyanaga, N., Morita, T., Nagai, T., Nishimura, H., Ozaki, T., Park, J., Sakawa, Y., Takabe, H., Williams, G. & Zhang, Z. (2013). New insights into the laser produced electron–positron pairs. New J. Phys. 15, 065010.CrossRefGoogle Scholar
Cowan, T.E., Roth, M., Johnson, J., Brown, C., Christl, M., Fountain, W., Hatchett, S., Henry, E.A., Hunt, A.W., Key, M.H., MacKinnon, A., Parnell, T., Pennington, D.M., Perry, M.D., Phillips, T.W., Sangster, T.C., Singh, M., Snavely, R., Stoyer, M., Takahashi, Y., Wilks, S.C. & Yasuike, K. (2000). Intense electron and proton beams from PetaWatt laser–matter interactions. Nucl. Instrum. Methods Phys. Res. A 455, 13.CrossRefGoogle Scholar
Geng, J.J., Wu, X.F., Huang, Y.F., Li, L. & Dai, Z.G. (2016). Imprints of electron–positron winds on the multi wave-length afterglows of gamma-ray bursts. Astrophys. J. 825, 107.Google Scholar
Goldreich, P. & Julian, W.H. (1969). Pulsar electrodynamics. Astrophys. J. 157, 869.CrossRefGoogle Scholar
Haas, F., Manfredi, G. & Feix, M. (2000). Multistream model for quantum plasmas. Phys. Rev. E 62, 2763.CrossRefGoogle ScholarPubMed
Harris, M., Hill, C.A., Tapster, P.R. & Vaughan, J.M. (1994). Laser modes with helical wave fronts. Phys. Rev. A 49, 3119.Google Scholar
Khan, S.A., Rehman, A.U. & Mendonca, J.T. (2014). Kinetic study of ion-acoustic plasma vortices. Plasma Phys. 21, 092109.CrossRefGoogle Scholar
Khan, SH. A., Ali, S. & Mendonca, J.T. (2013). Plasmons carrying orbital angular momentum in quantum plasmas. J. Plasma Phys. 79, 973979.Google Scholar
Leach, J., Padgett, M.J., Barnett, S.M., Franke-Arnold, S. & Courtial, J. (2002). Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901.CrossRefGoogle ScholarPubMed
Leyser, T.B., Norin, L., Mc Carrick, M., Pedersen, T.R. & Gustavsson, B. (2009). Radio pumping of ionospheric plasma with orbital angular momentum. Phys. Rev. Lett. 102, 065004.Google Scholar
Mehdian, H., Hajisharifi, K., Azadnia, F. & Tajik-Nezhad, S. (2016). Magnetorotational instability of weakly ionized and magnetized electron–positron-ion plasma. Phys. Plasmas 23, 102903.Google Scholar
Mendonca, J.T. (2012). Kinetic description of electron plasma waves with orbital angular momentum. Phys. Plasmas 19, 112113.CrossRefGoogle Scholar
Mendonca, J.T., Ali, S. & Thide, B. (2009). Plasmons with orbital angular momentum. Phys. Plasmas 16, 112103.Google Scholar
Michel, F.C. (1991). Theory of Neutron Star Magnetosphere. Chicago, IL: Chicago University Press.Google Scholar
Miller, H.R. & Witter, P.J. (1987). Active Galactic Nuclei. Berlin: Springer.Google Scholar
Misner, W., Thorne, K. & Wheeler, J.A. (1973). Gravitation. San Francisco, CA: Freeman.Google Scholar
Nekrasov, A.K. (2009). Compressible streaming instabilities in rotating thermal viscous objects. Astrophys. J. 704, 8088.Google Scholar
Rees, M.J. (1983). In The Very Early Universe. Cambridge: Cambridge University Press.Google Scholar
Rehman, A.U., Ali, S., Khan, S.A., Shahzad, K. (2016). Twisted electron-acoustic waves in plasmas. Plasma Phys. 23, 082122.Google Scholar
Saleem, H., Haque, Q. & Vranjes, J. (2003). Nonlinear drift waves in electron–positron–ion plasmas. Phys. Rev. E 67, 057402.Google Scholar
Saleem, H. & Khan, R. (2005). Two-Stream instabilities in electron–positron–ion plasmas. Phys. Scr. 71, 314317.Google Scholar
Schlickeiser, R., Pohl, M. & Vainio, R. (2003). The influence of electron impact ionization in the relativistic pickup of interstellar neutrals. Astrophys. J. 596, 840.CrossRefGoogle Scholar
Shukla, P.K. (2013). Twisted electrostatic ion-cyclotron waves in dusty plasma. Phys. Rev. E 87, 015101.Google Scholar
Shukla, P.K., Eliasson, B. & Stenflo, L. (2012). Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas. Phys. Rev. E 86, 016403.CrossRefGoogle ScholarPubMed
Shukla, P.K., Mamun, A.A. & Stenflo, L. (2003). Vortices in a strongly magnetized electron–positron–ion plasma. Phys. Scr. 68, 295297.Google Scholar
Stockem Novo, A., Yoon, P.H., Lazar, M., Schlickeiser, R., Poedts, S. & Seough, J. (2015). Quasilinear saturation of the aperiodic ordinary mode streaming instability. Phys. Plasmas 22, 092301.Google Scholar
Surko, C.M. & Murphy, T. (1990). Use of the positron as a plasma particle. Phys. Fluids B 2, 1372.Google Scholar
Tandberg-Hansen, E. & Emshie, A.G. (1988). The Physics of Solar Flares. Cambridge: Cambridge University Press.Google Scholar
Tinakiche, N. & Annou, R. (2015). Oscillating two-stream instability in a magnetized electron–positron–ion plasma. Phys. Plasmas 22, 042101.CrossRefGoogle Scholar
Verdon, M.W. & Melrose, D.B. (2008). Wave dispersion in a counter-streaming, cold, magnetized, electron–positron plasma. Phys. Rev. E 77, 046403.Google Scholar