Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T03:38:59.941Z Has data issue: false hasContentIssue false

Tritium content of a DT pellet in inertial confinement fusion

Published online by Cambridge University Press:  09 March 2009

Shigeo Kawata
Affiliation:
Department of Electrical Engineering, Nagaoka University ofTechnology, Nagaoka 940–21, Japan
Hideki Nakashima
Affiliation:
Department of Energy Conversion Engineering, Kyusyu University, Kasuga, Fukuoka 816, Japan

Abstract

A numerical and analytical estimation and a one-dimensionalhydrodynamic simulation show that a 30%reduction of the tritium content in a D-T pellet still gives sufficient energy output in aD-T inertial confinement fusion reactor.In other words, the tritiumb content can be reduced significantly without a significant reduction in the D-T fusion energy output.This new result also meansthat the tritium inventory can be reduced significantly before and during the reactor operation in the D-T inertial confinement fusion.This result comes from the contribution of a D-D reaction to the D-T reaction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Book, D.L. 1983 NRL Plasma Formula (Naval Research Laboratory, Washington, DC).Google Scholar
Duderstadt, J.J. & Moses, G.A. 1981 Inertial Confinement Fusion (John Wiley &Sons, New York).Google Scholar
Fraley, G.S. et al. 1974 Phys. Fluids 17, 474.Google Scholar
Hora, H. 1991 Plasmas at High Temperature and Density (Springer-Verlag, Heidelberg).Google Scholar
Hora, H. et al. 1991 In Laser Interaction and Related Plasma Phenomena, Hora, H. and Miley, G. H., eds.(Plenum, New York) Vol.9, p. 95.CrossRefGoogle Scholar
Kasotakis, G. et al. 1989 Laser Part. Beams 7, 511.CrossRefGoogle Scholar
Kawata, S. et al. 1982 j. Phys. Soc. Jpn. 51, 3018.Google Scholar
Kawata, S. & Niu, K. 1984 J. Phys. Soc. Jpn. 53, 3416.CrossRefGoogle Scholar
Meyer-Ter-Vehn, J. 1982 Nucl. Fusion 22, 56.CrossRefGoogle Scholar
Shiba, T. et al. 1988 Nucl. Fusion 28, 699.CrossRefGoogle Scholar
Skupsky, S. 1978 Nucl. Fusion 18, 843.CrossRefGoogle Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases (Wiley, New York).Google Scholar
Takabe, T. et al. 1989 Laser Part. Beams 7, 175.CrossRefGoogle Scholar
Takase, H. et al. 1983 j. Phys. Soc. Jpn. 52, 3400.CrossRefGoogle Scholar
Tamba, M. et al. 1983 Laser Part. Beams 1, 219.Google Scholar
Zel'Dovich, Y.B. & Raizer, Y.P. 1966 Physics ofShock Wave and High Temperature Hydrodynamic Phenomena (Academic Press, New York).Google Scholar