Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-12T20:44:24.724Z Has data issue: false hasContentIssue false

Transient evolution of multiple bubbles in laser induced breakdown in water

Published online by Cambridge University Press:  22 December 2010

A. Nath
Affiliation:
Laser and Photonics Laboratory, Department of Physics, Indian Institute of Technology, Guwahati, India
A. Khare*
Affiliation:
Laser and Photonics Laboratory, Department of Physics, Indian Institute of Technology, Guwahati, India
*
Address correspondence and reprint requests to: A. Khare, Laser and Photonics Laboratory, Department of Physics, Indian Institute of TechnologyGuwahati, Guwahati-781039, India. E-mail: [email protected]

Abstract

Pulsed laser induced plasma in water produces multiple bubbles with the passage of laser pulse. Shadowgraphy and beam deflection set-up is used to study the temporal and spatial evolution of these bubbles as a function of distance from the laser focus. The formation of multiple bubbles, bubble coalescence, and their effect onto cavity dynamics is reported. Bubble radius and the corresponding velocities from shadowgraphy is used to calculate the maximum gas pressure inside the bubble using Neppiras model. The maximum pressure inside the cavity is found to be 0.4 MPa at the laser focus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alti, K. & Khare, A. (2006a). Low-energy low-divergence pulsed indium atomic beam by laser ablation. Laser Part. Beams 24, 4753.CrossRefGoogle Scholar
Alti, K. & Khare, A. (2006b). Sculpted pulsed indium atomic beams via selective laser ablation of thin film. Laser Part. Beams 24, 469473.CrossRefGoogle Scholar
Batani, D., Stabile, H., Ravasio, A., Desai, T., Lucchini, G., Strati, F., Ullschmied, J., Krousky, E., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H., Ochi, Y., Kilpio, A., Shashkov, E., Stuchebrukhov, I., Vovchenko, V. & Krasuyk, I. (2003). Shock pressure induced by 0.44 µm laser radiation on aluminum targets. Laser Part. Beams 21, 481487.CrossRefGoogle Scholar
Berns, M.W., Wright, W.H. & Steubing, R.W. (1991). Laser microbeam as a tool in cell biology. Int. Rev. Cytol. 129, 144.CrossRefGoogle ScholarPubMed
Burns, S.E., Yiacoumi, S. & Tsouris, C. (1997). Microbubble generation for environmental and industrial separations. Separ. Purific. Techn. 11, 221232.CrossRefGoogle Scholar
Carroll, B., Chandra, M., Papaioannou, T., Daykhovsky, L., Grundfest, W. & Phillips, E. (1993). Biliary lithotripsy as an adjunct to laparoscopic common bile duct stone extraction. Surg. Endosc. 7, 356359.CrossRefGoogle ScholarPubMed
Casini, M., Harith, M.A., Palleschi, V., Salvetti, A., Singh, D.P. & Vaselli, M. (1991). Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air. Laser Part. Beams 9, 633639.CrossRefGoogle Scholar
Chesters, A.K. & Hofman, G. (1982). Bubble coalescence in pure liquids. Appl. Sci. Res. 38, 353361.CrossRefGoogle Scholar
Fang, X. & Ahmad, S.R. (2007). Saturation effect at high laser pulse energies in laser-induced breakdown spectroscopy for elemental analysis in water. Laser Part. Beams 25, 613620.CrossRefGoogle Scholar
Fong, S.W., Adhikari, D., Klaseboer, E. & Khoo, B.C. (2009). Interactions of multiple spark-generated bubbles with phase differences. Exper. Fluids 46, 705724.CrossRefGoogle Scholar
Giacomo, A.D., Dell'Agilo, M., Pascale, O.D. & Capitelli, M. (2007). From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples. Spectrochim. Acta B 62, 721738.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Jansen, E.D., Asshauer, T., Frenz, M., Motamedi, M., Delacrétaz, G. & Welch, A.J. (1998). Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation. IEEE J. Quant. Electron. 18, 278293.Google Scholar
Kennedy, P.K. (1995). A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I-Theory. IEEE J. Quan. Electr. 31, 22412249.CrossRefGoogle Scholar
Khoroshev, G.A. (1963). Collapse of vapor-air cavitation bubbles. Soviet Phys. Acoust. 9, 275279.Google Scholar
Kruusing, A. (2004). Underwater and water-assisted laser processing: Part 1- general features, steam cleaning and shock processing. Opt. Lasers Eng. 41, 307327.CrossRefGoogle Scholar
Kudryashov, S.I., Lyon, K. & Allen, S.D. (2006). Parametric generation of multimegahertz acoustic oscillations in laser-generated multibubble system in bulk water. Appl. Phys. Lett. 88, 21410512141053.CrossRefGoogle Scholar
Lauterborn, W. & Hentschel, W. (1985). Cavitation bubble dynamics studied by high speed photography and holography: Part one. Ultrason. 23, 260268.CrossRefGoogle Scholar
Lazic, V., Colao, F., Fantoni, R. & Spizzicchino, V. (2005). Laser-induced breakdown spectroscopy in water: Improvement of the detection threshold by signal processing. Spectrochim. Acta B 60, 10021013.CrossRefGoogle Scholar
Lim, K.Y., Quinto-Su, P.A., Klaseboer, E., Khoo, B.C., Venugopalan, V. & Ohl, C.D. (2010). Nonspherical laser-induced cavitation bubbles. Phys. Rev. E 81, 01630810163089.CrossRefGoogle ScholarPubMed
Makide, Y., Kato, S., Tominaga, T. & Takeuchi, K. (1983). Laser isotope separation of tritium from deuterium: CO2-laser-induced multiphoton dissociation of C2TF5 in C2DF5. Rep. Phys. 32, 3334.Google Scholar
Michel, A.P.M., Farr, N.E. & Chave, A.D. (2006). Evaluation of laser-induced breakdown spectroscopy (LIBS) as a new in situ chemical sensing technique for the deep ocean. MTS/IEEE Oceans 2006 Conf. Proc., 15 (Boston, MA September 18–21 2006).Google Scholar
Nath, A. & Khare, A. (2008). Measurement of charged particles and cavitation bubble expansion velocities in laser induced breakdown in water. Laser Part. Beams 26, 425432.CrossRefGoogle Scholar
Neppiras, E.A. (1980). Acoustic cavitation. Phys. RepT. 61, 159284.CrossRefGoogle Scholar
Noack, J. & Vogel, A. (1999). Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density. IEEE J. Quant. Electron. 35, 11561167.CrossRefGoogle Scholar
Petkovšek, R. & Gregorčič, P. (2007). A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography. J. Appl. Phys. 102, 044909044917.CrossRefGoogle Scholar
Philipp, A. & Lauterborn, W. (1998). Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Ramanathan, D. & Molian, P.A. (2001). Laser micromachining using liquid optics. Appl. Phys. Lett. 78, 14841486.CrossRefGoogle Scholar
Rayleigh, L. (1917). On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. 34, 9498.CrossRefGoogle Scholar
Rothschild, M., Bloomstein, T.M., Kunz, R.R., Liberman, V., Switkes, M., Palmacci, S.T., Sedlacek, J.H.C., Hardy, D. & Grenville, A. (2004). Liquid immersion lithography: Why, how, and when? J. Vac. Sci. Technol. B 22, 28772881.CrossRefGoogle Scholar
Rungsiyaphornrat, S., Klaseboer, E., Khoo, B.C. & Yeo, K.S. (2003). The merging of two gaseous bubbles with an application to underwater expolsions. Comp. Fluids 32, 10491074.CrossRefGoogle Scholar
Schade, W., Bohling, C., Hohmann, K. & Scheel, D. (2006). Laser-induced plasma spectroscopy for mine detection and verification. Laser Part. Beams 24, 241247.CrossRefGoogle Scholar
Schnürer, M., Ter-Avetisyan, S., Busch, S., Risse, E., Kalachnikov, M.P., Sandner, W. & Nickles, P.V. (2005). Ion acceleration with ultrafast laser driven water droplets. Laser Part. Beams 23, 337343.CrossRefGoogle Scholar
Shangguan, H., Casperson, L.W. & Prahl, S.A. (1996). Microsecond laser ablation of thrombus and gelatin under clear liquids: Contact versus noncontact. IEEE J. Selected Topics Quant. Electron. 2, 818825.CrossRefGoogle Scholar
Takahashi, M., Chiba, K. & Li, P. (2007). Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 111, 13431347.CrossRefGoogle ScholarPubMed
Venugopalan, V., Guerra, A. III, Nahen, K. & Vogel, A. (2002). Role of laser-induced plasma formation in pulsed cellular microsurgery and manipulation. Phys. Rev. Lett. 88, 781031781034.CrossRefGoogle Scholar
Vogel, A., Schweiger, P., Frieser, A., Asiyo, M.N. & Birngruber, R. (1990). Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects. IEEE J. Quan. Electr. 26, 22402258.CrossRefGoogle Scholar
Vogel, A., Nahen, K., Theisen, D. & Noack, J. (1996a). Plasma formation in water by picoseconds and nanosecond Nd:YAG laser pulses – Part I: Optical breakdown at threshold and superthreshold irradiance. IEEE J. Selected Topics Quant. Electron. 2, 847860.CrossRefGoogle Scholar
Vogel, A., Engelhardt, R., Behnle, U. & Parlitz, U. (1996b). Minimisation of cavitation effects in pulsed laser ablation illustrated on laser angioplasty. Appl. Phys. B 62, 173182.CrossRefGoogle Scholar
Vogel, A., Busch, S. & Parlitz, U. (1996c). Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100, 148165.CrossRefGoogle Scholar
Ward, B. & Emmony, D.C. (1991). Direct observation of the pressure developed in a liquid during cavitation bubble collapse. Appl. Phys. Lett. 59, 22282230.CrossRefGoogle Scholar
Yasuda, T., Takahashi, N., Baba, M., Tei, K. & Yamaguchi, S. (2008). An experimental study on micro-bubble generation by laser-induced breakdown in water. Rev. Laser Eng. 36, 12731275.CrossRefGoogle Scholar
Yavas, O., Schilling, A., Bischof, J., Boneberg, J. & Leiderer, P. (1997). Bubble nucleation and pressure generation during laser cleaning of surfaces. Appl. Phys. A 64, 331339.CrossRefGoogle Scholar
Zhong, P., Cocks, F.H., Cioanta, I. & Preminger, G.M. (1997). Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shockwave lithotripsy. J. Urology 158, 23232328.CrossRefGoogle Scholar