Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T07:14:39.192Z Has data issue: false hasContentIssue false

Time-dependent neutral-plasma isothermal expansions into a vacuum

Published online by Cambridge University Press:  12 December 2008

Y. Huang*
Affiliation:
Department of Engineering Physics, Tsinghua University, Beijing, China and China Institute of Atomic Energy, Beijing, China
X. Duan
Affiliation:
China Institute of Atomic Energy, Beijing, China
X. Lan
Affiliation:
China Institute of Atomic Energy, Beijing, China
Z. Tan
Affiliation:
China Institute of Atomic Energy, Beijing, China
N. Wang
Affiliation:
China Institute of Atomic Energy, Beijing, China
X. Tang
Affiliation:
China Institute of Atomic Energy, Beijing, China
Y. He
Affiliation:
Department of Engineering Physics, Tsinghua University, Beijing, China
*
Address correspondence and reprint requests to: Yongsheng Huang, Department of Engineering Physics, Tsinghua University, Beijing 100084, China. E-mail: [email protected]

Abstract

A time-dependent solution for neutral-plasma isothermal expansions into a vacuum in a special-transformation coordinate system is obtained. In this new coordinate system, the special self-similar solutions of it were given by Huang and co-workers (Appl. Phys. Lett. 92, 031501). Combining the time-dependent solution and the quasi-linear increase of the electron density due to the hot-electron recirculation, an analytic model is proposed to reveal the influence of the hot-electron recirculation on the increase of electric field and on the acceleration of ions of different masses and charges.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cai, H.B., Yu, W., Zhu, S.P., Zheng, C.Y., Cao, L.H. & Pei, W.B. (2006). Vacuum heating in the interaction of ultrashort relativistically strong laser pulses with solid targets. Phys. Plasmas 13, 063108–6.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
d'Humires, E., Lefebvre, E., Gremillet, L. & Malka, V. (2005). Proton acceleration mechanisms in high-intensity laser interaction with thin foils. Phys. Plasmas 12, 062704–13.CrossRefGoogle Scholar
Eliezer, S., Murakaml, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Gurevich, A., Anderson, D. & Wilhelmsson, H. (1979). Ion acceleration in an expanding plasma with non-Maxwellian electrons. Phys. Rev. Lett. 42, 769–764.CrossRefGoogle Scholar
Huang, Y.S., Bi, Y.J., Duan, X.J., Lan, X.F., Wang, N.Y., Tang, X.Z. & He, Y.X. (2008). Self-similar neutral-plasma isothermal expansion into a vacuum. Appl. Phys. Lett. 92, 031501–3.CrossRefGoogle Scholar
Huang, Y.S., Bi, Y.J., Duan, X.J., Lan, X.F., Wang, N.Y., Tang, X.Z. & He, Y.X. (2008). Energetic ion acceleration with a non-Maxwellian hot-electron tail. Appl. Phys. Lett. 92, 141504–3.CrossRefGoogle Scholar
Huang, Y.S., Lan, X.F., Duan, X.J., Tan, Z.X., Wang, N.Y., Shi, Y.J., Tang, X.Z. & Xi, H.Y. (2007). Hot-electron recirculation in ultraintense laser pulse interactions with thin foils. Phys. Plasmas 14, 103106–6.CrossRefGoogle Scholar
Kaluza, M., Schreiber, J., Santala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-ter-Vehn, J. & Witte, K.J. (2004). Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003–4.CrossRefGoogle ScholarPubMed
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Y. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.CrossRefGoogle Scholar
Mackinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Andersen, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 88, 215006–4.CrossRefGoogle ScholarPubMed
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002–4.CrossRefGoogle ScholarPubMed
Murakami, M. & Basko, M.M. (2006). Self-similar expansion of finite-size non-quasi-neutral plasmas into vacuum: Relation to the problem of ion acceleration. Phys. Plasmas 13, 012105–7.CrossRefGoogle Scholar
Santos, J.J., Amiranoff, F., Baton, S.D., Gremillet, L., Koenig, M., Martinolli, E., Rabec Le Gloahec, M., Rousseaux, C., Batani, D., Bernardinello, A., Greison, G. & Hall, T. (2002). Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics. Phys. Rev. Lett. 89, 025001–4.CrossRefGoogle ScholarPubMed
Schollmeier, M., Roth, M., Blazevic, A., Brambrink, E., Cobble, J.A., Fernandez, J.C., Flippo, K.A., Gautier, D.C., Habs, D., Harres, K., Hegelich, B.M., Hesslinga, T., Hoffmann, D.H.H., Letzring, S., Nurnberg, F., Schaumann, G., Schreiber, J. & Witte, K. (2007). Laser ion acceleration with micro-grooved targets. Nucl. Instr. Meth. Phys. Res. A 577, 186190.CrossRefGoogle Scholar
Schwoerer, H., Pfotenhauer, S., Jackel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445–8;CrossRefGoogle ScholarPubMed
Sentoku, Y., Cowan, T.E., Kemp, A. & Ruhl, H. (2003). High energy proton acceleration in interaction of short laser pulse with dense plasma target. Phys. Plasmas 10, 20092015.CrossRefGoogle Scholar
Strangio, C., Caruso, A., Neely, D., Andreoli, P.L., Anzalone, R., Clarke, R., Cristofari, G., Del Prete, E., Di Giorgio, G., Murphy, C., Ricci, C., Stevens, R. & Tolley, M. (2007). Production of multi-MeV per nucleon ions in the controlled amount of matter mode (CAM) by using causally isolated targets. Laser Part. Beams 25, 8591.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831384.CrossRefGoogle ScholarPubMed
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542548.CrossRefGoogle Scholar