Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T16:14:39.305Z Has data issue: false hasContentIssue false

Thermodynamic properties and thermal conductivity of high density deuterium

Published online by Cambridge University Press:  09 March 2009

Kazuko Inoue
Affiliation:
Faculty of Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564
Tomio Ariyasu
Affiliation:
Faculty of Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564

Abstract

The phase diagram of high density (1023 ˜ 1027/cm3) deuterium is obtained by calculation. The values of specific heat, electrical resistivity and thermal conductivity in the metallic state are estimated over a wide range of temperature (10−2 ˜ 104 eV). The temperature dependences of these properties are shown in figures with the density. When TTf (Tf: the Fermi temperature of electrons), the behavior is very similar to those of normal metals. At high temperatures where TTf, the behavior is similar to that of completely ionized classical plasma.

This fundamental data for deuterium will help us understand the properties of fuel in inertial-confinement fusion and to solve the fluid equations for efficient compression of fuel pellets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berggren, K. F. 1970 Phys. Rev. A1, 1783.CrossRefGoogle Scholar
Galam, S. & Hansen, J. P. 1976 Phys. Rev. A14, 816.CrossRefGoogle Scholar
Gupta, U. & Rajagopal, A. K. 1979 J. Phys. B., 12, L703.CrossRefGoogle Scholar
Hubbard, W. B. & Lampe, M. 1969 Astrophys. J. Suppl. 18 297.CrossRefGoogle Scholar
Inoue, K. & Ariyasu, T. 1982 J. High Temperature Society 8, 149 (in Japanese).Google Scholar
Kasuya, T. 1961 Magnetic Resonance Absorption, Electrical Properties of Matter (Kyoritsu Shuppan-sha, Tokyo) p. 297 (in Japanese).Google Scholar
Lampe, M. 1968 Phys. Rev. 174, 276.CrossRefGoogle Scholar
Liebenberg, D. H., Mills, R. L. & Bronson, J. C. 1978 Phys. Rev. B18 4526.CrossRefGoogle Scholar
Minoo, H., Deutsch, C. & Hansen, J. P. 1976 Phys. Rev. A14, 840.CrossRefGoogle Scholar
Perrot, F. 1982 Phys. Rev. A25, 489.CrossRefGoogle Scholar
Nagara, H., Miyagi, H. & Nakamura, T. 1976 Prog. theor. Phys. 56, 396.CrossRefGoogle Scholar
Rice, M. J. 1970 Phys. Rev. B2, 4800.CrossRefGoogle Scholar
Rozsnyai, B. F. 1972 Phys. Rev. A5, 137.Google Scholar
Shapiro, J. N. 1970 Phys. Rev. B1, 3982.CrossRefGoogle Scholar
Slattery, W. L., Doolen, G. D. & Dewit, H. E. 1980 Phys. Rev. A21, 2087.CrossRefGoogle Scholar
Spitzer, L. Jr., 1962 Physics of Fully Ionized Gases (Interscience Publishers, New York).Google Scholar
Springer, J. F., Pokrant, M. A. & Stevens, F. A. Jr., 1973 J. Chem. Phys. 58, 4863.CrossRefGoogle Scholar
Straus, D. M. & Ashcroft, N. W. 1977 Phys. Rev. Lett. 38, 415.CrossRefGoogle Scholar
Trubitsyn, V. P. 1966 Sov. Phys.—Solid State 8, 688.Google Scholar
Trubitsyn, V. P. 1971 Sov. Astronomy 15, 303.Google Scholar
Ziman, J. M. 1967 Advances in Phys. 16, 551.CrossRefGoogle Scholar