Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T21:12:34.880Z Has data issue: false hasContentIssue false

Thermalization of synchrotron radiation from field-aligned currents

Published online by Cambridge University Press:  09 March 2009

William Peter
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545
Anthony L. Peratt
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545

Abstract

Three-dimensional plasma simulations of interacting galactic-dimensioned current filaments show bursts of synchroton radiation of energy density 1·2 ×10−13 erg/cm3 which can be compared with the measured cosmic microwave background energy density of 1·5 × 10−13 erg/cm3. However, the synchrotron emission observed in the simulations is not blackbody. In this paper, we analyze the absorption of the synchrotron emission by the current filaments themselves (i.e., self-absorption) in order to investigate the thermalization of the emitted radiation. It is found that a large number of current filaments (>1031) are needed to make the radiation spectrum blackbody up to the observed measured frequency of 100 GHz. The radiation spectrum and the required number of current filaments is a strong function of the axial magnetic field in the filaments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfvén, H. 1981 Cosmic Plasma, D. Reidel Publishing, Dordrecht, Holland.CrossRefGoogle Scholar
Alfvén, H. & Mendis, A. 1977 Nature 266, 698.CrossRefGoogle Scholar
Bekefi, G. 1966 Radiation Processes in Plasma, John Wiley, New York, N.Y.Google Scholar
Bekefi, G., Hirshfield, J. L. & Brown, S. C. 1961 Physical Review, 122, 1037.CrossRefGoogle Scholar
Bekefi, G., Hirshfield, J. L. & Sanford, C. B. 1961 Phys. Fluids, 4, 173.CrossRefGoogle Scholar
Buneman, O. et al. 1980 J. Comp. Phys., 38, 1.CrossRefGoogle Scholar
Claussen, M. J., Heiligman, G. M. & Lo, K. Y. 1984 Nature, 310, 298.CrossRefGoogle Scholar
Crusius, A. 1987 these proceedings.Google Scholar
Fälthammar, C. -G. 1986 IEEE Trans, on Plasma Sci., PS-14, 616.CrossRefGoogle Scholar
Hirshfield, J. L. & Bekefi, G. 1963 Nature, 198, 20.CrossRefGoogle Scholar
Hoyle, F., Narlikar, J. V. & Wickramasinghe, N. C. 1984 Astrophysics and Space Science, 103, 371.CrossRefGoogle Scholar
Moran, J. 1984 Nature, 310, 270.CrossRefGoogle Scholar
Peratt, A. L. 1986a IEEE Trans, on Plasma Sci., PS-14, 639.CrossRefGoogle Scholar
Peratt, A. L. 1986b IEEE Trans, on Plasma Sci. PS-14, 763.CrossRefGoogle Scholar
Peratt, A. L. & Green, J. C. 1983 Astrophys. Space Sci., 91, 19.CrossRefGoogle Scholar
Strelnitskij, V. S. 1984 Mon. Not. R. Astr. Soc., 207, 339.CrossRefGoogle Scholar
Sudan, R. N. 1965 Phys. Fluids, 8, 153.CrossRefGoogle Scholar
Trubnikov, B. A. 1958 Sov. Phys., ‘Doklady’, 3, 136.Google Scholar
Trubnikov, B. A. & Yakubov, V. B. 1963 Plasma Physics (Journal of Nuclear Energy, Part C) 5, 7.Google Scholar
Wickramasinghe, N. C. et al. 1975 Astrophys. Space Sci., 35, L9.CrossRefGoogle Scholar
Zheleznyakov, V. V. 1966 Zh. Eksp. Teo. Fiz., 51, 570 (Soviet Physics JETP 24, p. 381).Google Scholar